ﻻ يوجد ملخص باللغة العربية
Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. An general PFG signal attenuation expres
The studying of anomalous diffusion by pulsed field gradient (PFG) diffusion technique still faces challenges. Two different research groups have proposed modified Bloch equation for anomalous diffusion. However, these equations have different forms
A modified-Bloch equation based on the fractal derivative is proposed to analyze pulsed field gradient (PFG) anomalous diffusion. Anomalous diffusion exists in many systems such as in polymer or biological systems. PFG anomalous diffusion could be an
Pulsed field gradient (PFG) has been increasingly employed to study anomalous diffusions in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). However, the analysis of PFG anomalous diffusion is complicated. In this paper, a fract
Anomalous diffusion exists widely in polymer and biological systems. Pulsed field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in NMR and MRI. However, the interpretation of PFG anomalous diffusion is complicated