ﻻ يوجد ملخص باللغة العربية
In this paper, we establish an asymptotic formula with an effective bound on the error term for the Andrews smallest parts function $mathrm{spt}(n)$. We use this formula to prove recent conjectures of Chen concerning inequalities which involve the partition function $p(n)$ and $mathrm{spt}(n)$. Further, we strengthen one of the conjectures, and prove that for every $epsilon>0$ there is an effectively computable constant $N(epsilon) > 0$ such that for all $ngeq N(epsilon)$, we have begin{equation*} frac{sqrt{6}}{pi}sqrt{n},p(n)<mathrm{spt}(n)<left(frac{sqrt{6}}{pi}+epsilonright) sqrt{n},p(n). end{equation*} Due to the conditional convergence of the Rademacher-type formula for $mathrm{spt}(n)$, we must employ methods which are completely different from those used by Lehmer to give effective error bounds for $p(n)$. Instead, our approach relies on the fact that $p(n)$ and $mathrm{spt}(n)$ can be expressed as traces of singular moduli.
The spt-function spt($n$) was introduced by Andrews as the weighted counting of partitions of $n$ with respect to the number of occurrences of the smallest part. In this survey, we summarize recent developments in the study of spt($n$), including con
We establish in this paper sharp lower bounds for the $2k$-th moment of the derivative of the Riemann zeta function on the critical line for all real $k geq 0$.
Let $E/mathbb{Q}$ be an elliptic curve. The modified Szpiro ratio of $E$ is the quantity $sigma_{m}( E) =logmaxleft{ leftvert c_{4}^{3}rightvert ,c_{6}^{2}right} /log N_{E}$ where $c_{4}$ and $c_{6}$ are the invariants associated to a global minimal
Let $q$ be a power of a prime $p$, let $k$ be a nontrivial divisor of $q-1$ and write $e=(q-1)/k$. We study upper bounds for cyclotomic numbers $(a,b)$ of order $e$ over the finite field $mathbb{F}_q$. A general result of our study is that $(a,b)leq
We look at upper bounds for the count of certain primes related to the Fermat numbers $F_n=2^{2^n}+1$ called elite primes. We first note an oversight in a result of Krizek, Luca and Somer and give the corrected, slightly weaker upper bound. We then a