ﻻ يوجد ملخص باللغة العربية
Unprecedented human mobility has driven the rapid urbanization around the world. In China, the fraction of population dwelling in cities increased from 17.9% to 52.6% between 1978 and 2012. Such large-scale migration poses challenges for policymakers and important questions for researchers. To investigate the process of migrant integration, we employ a one-month complete dataset of telecommunication metadata in Shanghai with 54 million users and 698 million call logs. We find systematic differences between locals and migrants in their mobile communication networks and geographical locations. For instance, migrants have more diverse contacts and move around the city with a larger radius than locals after they settle down. By distinguishing new migrants (who recently moved to Shanghai) from settled migrants (who have been in Shanghai for a while), we demonstrate the integration process of new migrants in their first three weeks. Moreover, we formulate classification problems to predict whether a person is a migrant. Our classifier is able to achieve an F1-score of 0.82 when distinguishing settled migrants from locals, but it remains challenging to identify new migrants because of class imbalance. This classification setup holds promise for identifying new migrants who will successfully integrate into locals (new migrants that misclassified as locals).
In the global move toward urbanization, making sure the people remaining in rural areas are not left behind in terms of development and policy considerations is a priority for governments worldwide. However, it is increasingly challenging to track im
Increasingly available high-frequency location datasets derived from smartphones provide unprecedented insight into trajectories of human mobility. These datasets can play a significant and growing role in informing preparedness and response to natur
The non-pharmaceutical interventions (NPIs), aimed at reducing the diffusion of the COVID-19 pandemic, has dramatically influenced our behaviour in everyday life. In this work, we study how individuals adapted their daily movements and person-to-pers
In the digital era, individuals are increasingly profiled and grouped based on the traces they leave behind in online social networks such as Twitter and Facebook. In this paper, we develop and evaluate a novel text analysis approach for studying use
Previous surveys of public attitudes toward automated vehicle (AV) and transit integration primarily took place in large urban areas. AV-transit integration also has a great potential in small urban areas. A survey of public attitudes towards AV-tran