ترغب بنشر مسار تعليمي؟ اضغط هنا

The Optical/NIR afterglow of GRB 111209A: Complex yet not Unprecedented

82   0   0.0 ( 0 )
 نشر من قبل David Alexander Kann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Afterglows of Gamma-Ray Bursts (GRBs) are simple in the most basic model, but can show many complex features. The ultra-long duration GRB 111209A, one of the longest GRBs ever detected, also has the best-monitored afterglow in this rare class of GRBs. We want to address the question whether GRB 111209A was a special event beyond its extreme duration alone, and whether it is a classical GRB or another kind of high-energy transient. The afterglow may yield significant clues. We present afterglow photometry obtained in seven bands with the GROND imager as well as in further seven bands with the UVOT telescope on-board the Neil Gehrels Swift Observatory. The light curve is analysed by multi-band modelling and joint fitting with power-laws and broken power-laws, and we use the contemporaneous GROND data to study the evolution of the spectral energy distribution. We compare the optical afterglow to a large ensemble we have analysed in earlier works, and especially to that of another ultra-long event, GRB 130925A. We furthermore undertake a photometric study of the host galaxy. We find a strong, chromatic rebrightening event at approx 0.8 days after the GRB, during which the spectral slope becomes redder. After this, the light curve decays achromatically, with evidence for a break at about 9 days after the trigger. The afterglow luminosity is found to not be exceptional. We find that a double-jet model is able to explain the chromatic rebrightening. The afterglow features have been detected in other events and are not unique. The duration aside, the GRB prompt emission and afterglow parameters of GRB 111209A are in agreement with the known distributions for these parameters. While the central engine of this event may differ from that of classical GRBs, there are multiple lines of evidence pointing to GRB 111209A resulting from the core-collapse of a massive star with a stripped envelope.



قيم البحث

اقرأ أيضاً

The ultra-long Gamma Ray Burst GRB 111209A at redshift z=0.677, is so far the longest GRB ever observed, with rest frame prompt emission duration of ~4 hours. In order to explain the bursts exceptional longevity, a low metallicity blue supergiant pro genitor has been invoked. In this work, we further investigate this peculiar burst by performing a multi-band temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus Wind, XMM-Newton, TAROT as well as from other ground based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: i) an unprecedented large optical delay of 410+/-50 s is measured between the peak epochs of a marked flare observed also in gamma-rays after about 2 ks from the first Swift/BAT trigger; ii) if the optical and X-ray/gamma-ray photons during the prompt emission share a common origin, as suggested by their similar temporal behavior, a certain amount of dust in the circumburst environment should be introduced, with rest frame visual dust extinction of AV=0.3-1.5 mag; iii) at the end of the X-ray steep decay phase and before the start of the X-ray afterglow, we detect the presence of a hard spectral extra power law component never revealed so far. On the contrary, the optical afterglow since the end of the prompt emission shows more common properties, with a flux power law decay with index alpha=1.6+/-0.1 and a late re-brightening feature at 1.1 day. We discuss our findings in the context of several possible interpretations given so far to the complex multi-band GRB phenomenology. We also attempt to exploit our results to further constrain the progenitor nature properties of this exceptionally long GRB, suggesting a binary channel formation for the proposed blue supergiant progenitor.
We present multiwavelength (optical/near infrared/millimetre) observations of a short duration gamma-ray burst detected by Swift (GRB 050509b) collected between 0 seconds and ~18.8 days after the event. No optical, near infrared or millimetre emissio n has been detected in spite of the well localised X-ray afterglow, confirming the elusiveness of the short duration events. We also discuss the possibility of the burst being located in a cluster of galaxies at z= 0.225 or beyond. In the former case, the spectral energy distribution of the neighbouring, potential host galaxy, favours a system harbouring an evolved dominant stellar population (age ~360 Myr), unlike most long duration GRB host galaxies observed so far, i.e. thus giving support to a compact binary merger origin. Any underlying supernova that could be associated with this particular event should have been at least 3 magnitudes fainter than the type Ib/c SN 1998bw and 2.3 magnitudes fainter than a typical type Ia SN.
We determine Johnson $B,V$ and Cousins $R,I$ photometric CCD magnitudes for the afterglow of GRB 021211 during the first night after the GRB trigger. The afterglow was very faint and would have been probably missed if no prompt observation had been c onducted. A fraction of the so-called ``dark GRBs may thus be just ``optically dim and require very deep imaging to be detected. The early-time optical light curve reported by other observers shows prompt emission with properties similar to that of GRB 990123. Following this, the afterglow emission from $sim 11$ min to $sim 33$ days after the burst is characterized by an overall power-law decay with a slope $1.1pm0.02$ in the $R$ passband. We derive the value of spectral index in the optical to near-IR region to be 0.6$pm$0.2 during 0.13 to 0.8 day after the burst. The flux decay constant and the spectral slope indicate that optical observations within a day after the burst lies between cooling frequency and synchrotron maximum frequency.
607 - K. Wiersema , S. Covino , K. Toma 2014
Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarizatio n directly probes the magnetic properties of the jet, when measured minutes after the burst, and the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after burst in GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and negligable circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blastwave. Here we report the detection of circularly polarized optical light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.
221 - B. Gendre 2009
We present the observations of the afterglow of gamma-ray burst GRB 090102. Optical data taken by the TAROT, REM, GROND, together with publicly available data from Palomar, IAC and NOT telescopes, and X-ray data taken by the XRT instrument on board t he Swift spacecraft were used. This event features an unusual light curve. In X-rays, it presents a constant decrease with no hint of temporal break from 0.005 to 6 days after the burst. In the optical, the light curve presents a flattening after 1 ks. Before this break, the optical light curve is steeper than that of the X-ray. In the optical, no further break is observed up to 10 days after the burst. We failed to explain these observations in light of the standard fireball model. Several other models, including the cannonball model were investigated. The explanation of the broad band data by any model requires some fine tuning when taking into account both optical and X-ray bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا