ﻻ يوجد ملخص باللغة العربية
Sterns diatomic sequence with its intrinsic repetition and refinement structure between consecutive powers of $2$ gives rise to a rather natural probability measure on the unit interval. We construct this measure and show that it is purely singular continuous, with a strictly increasing, Holder continuous distribution function. Moreover, we relate this function with the solution of the dilation equation for Sterns diatomic sequence.
Let a(n) be the Sterns diatomic sequence, and let x1,...,xr be the distances between successive 1s in the binary expansion of the (odd) positive integer n. We show that a(n) is obtained by evaluating generalized Chebyshev polynomials when the variabl
In this work we give general conditions under which a $C^0$ perturbation of an expansive homeomorphim with specification property has an unique Bowen measure, that is, there is an ergodic probability measure which is the unique measure maximizing the
Let $f_0(z) = exp(z/(1-z))$, $f_1(z) = exp(1/(1-z))E_1(1/(1-z))$, where $E_1(x) = int_x^infty e^{-t}t^{-1}{,d}t$. Let $a_n = [z^n]f_0(z)$ and $b_n = [z^n]f_1(z)$ be the corresponding Maclaurin series coefficients. We show that $a_n$ and $b_n$ may be
The ability of the organism to distinguish between various stimuli is limited by the structure and noise in the population code of its sensory neurons. Here we infer a distance measure on the stimulus space directly from the recorded activity of 100
For a prime $pge 5$ let $q_0,q_1,ldots,q_{(p-3)/2}$ be the quadratic residues modulo $p$ in increasing order. We study two $(p-3)/2$-periodic binary sequences $(d_n)$ and $(t_n)$ defined by $d_n=q_n+q_{n+1}bmod 2$ and $t_n=1$ if $q_{n+1}=q_n+1$ and $