ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixed penalization in convolutive nonnegative matrix factorization for blind speech dereverberation

123   0   0.0 ( 0 )
 نشر من قبل Francisco Ibarrola
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This degradation represents a problem when dealing with audio signals, particularly in the field of speech signal processing, such as automatic speech recognition. Although there are some approaches to deal with this issue that are quite satisfactory under certain conditions, constructing a method that works well in a general context still poses a significant challenge. In this article, we propose a method based on convolutive nonnegative matrix factorization that mixes two penalizers in order to impose certain characteristics over the time-frequency components of the restored signal and the reverberant components. An algorithm for implementing the method is described and tested. Comparisons of the results against those obtained with state of the art methods are presented, showing significant improvement.



قيم البحث

اقرأ أيضاً

Multichannel blind audio source separation aims to recover the latent sources from their multichannel mixtures without supervised information. One state-of-the-art blind audio source separation method, named independent low-rank matrix analysis (ILRM A), unifies independent vector analysis (IVA) and nonnegative matrix factorization (NMF). However, the spectra matrix produced from NMF may not find a compact spectral basis. It may not guarantee the identifiability of each source as well. To address this problem, here we propose to enhance the identifiability of the source model by a minimum-volume prior distribution. We further regularize a multichannel NMF (MNMF) and ILRMA respectively with the minimum-volume regularizer. The proposed methods maximize the posterior distribution of the separated sources, which ensures the stability of the convergence. Experimental results demonstrate the effectiveness of the proposed methods compared with auxiliary independent vector analysis, MNMF, ILRMA and its extensions.
For most of the state-of-the-art speech enhancement techniques, a spectrogram is usually preferred than the respective time-domain raw data since it reveals more compact presentation together with conspicuous temporal information over a long time spa n. However, the short-time Fourier transform (STFT) that creates the spectrogram in general distorts the original signal and thereby limits the capability of the associated speech enhancement techniques. In this study, we propose a novel speech enhancement method that adopts the algorithms of discrete wavelet packet transform (DWPT) and nonnegative matrix factorization (NMF) in order to conquer the aforementioned limitation. In brief, the DWPT is first applied to split a time-domain speech signal into a series of subband signals without introducing any distortion. Then we exploit NMF to highlight the speech component for each subband. Finally, the enhanced subband signals are joined together via the inverse DWPT to reconstruct a noise-reduced signal in time domain. We evaluate the proposed DWPT-NMF based speech enhancement method on the MHINT task. Experimental results show that this new method behaves very well in prompting speech quality and intelligibility and it outperforms the convnenitional STFT-NMF based method.
We present Vibrato Nonnegative Tensor Factorization, an algorithm for single-channel unsupervised audio source separation with an application to separating instrumental or vocal sources with nonstationary pitch from music recordings. Our approach ext ends Nonnegative Matrix Factorization for audio modeling by including local estimates of frequency modulation as cues in the separation. This permits the modeling and unsupervised separation of vibrato or glissando musical sources, which is not possible with the basic matrix factorization formulation. The algorithm factorizes a sparse nonnegative tensor comprising the audio spectrogram and local frequency-slope-to-frequency ratios, which are estimated at each time-frequency bin using the Distributed Derivative Method. The use of local frequency modulations as separation cues is motivated by the principle of common fate partial grouping from Auditory Scene Analysis, which hypothesizes that each latent source in a mixture is characterized perceptually by coherent frequency and amplitude modulations shared by its component partials. We derive multiplicative factor updates by Minorization-Maximization, which guarantees convergence to a local optimum by iteration. We then compare our method to the baseline on two separation tasks: one considers synthetic vibrato notes, while the other considers vibrato string instrument recordings.
When we place microphones close to a sound source near other sources in audio recording, the obtained audio signal includes undesired sound from the other sources, which is often called cross-talk or bleeding sound. For many audio applications includ ing onstage sound reinforcement and sound editing after a live performance, it is important to reduce the bleeding sound in each recorded signal. However, since microphones are spatially apart from each other in this situation, typical phase-aware blind source separation (BSS) methods cannot be used. We propose a phase-insensitive method for blind bleeding-sound reduction. This method is based on time-channel nonnegative matrix factorization, which is a BSS method using only amplitude spectrograms. With the proposed method, we introduce the gamma-distribution-based prior for leakage levels of bleeding sounds. Its optimization can be interpreted as maximum a posteriori estimation. The experimental results of music bleeding-sound reduction indicate that the proposed method is more effective for bleeding-sound reduction of music signals compared with other BSS methods.
343 - Ke Wang , Junbo Zhang , Sining Sun 2018
We investigate the use of generative adversarial networks (GANs) in speech dereverberation for robust speech recognition. GANs have been recently studied for speech enhancement to remove additive noises, but there still lacks of a work to examine the ir ability in speech dereverberation and the advantages of using GANs have not been fully established. In this paper, we provide deep investigations in the use of GAN-based dereverberation front-end in ASR. First, we study the effectiveness of different dereverberation networks (the generator in GAN) and find that LSTM leads a significant improvement as compared with feed-forward DNN and CNN in our dataset. Second, further adding residual connections in the deep LSTMs can boost the performance as well. Finally, we find that, for the success of GAN, it is important to update the generator and the discriminator using the same mini-batch data during training. Moreover, using reverberant spectrogram as a condition to discriminator, as suggested in previous studies, may degrade the performance. In summary, our GAN-based dereverberation front-end achieves 14%-19% relative CER reduction as compared to the baseline DNN dereverberation network when tested on a strong multi-condition training acoustic model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا