ﻻ يوجد ملخص باللغة العربية
We apply the twin method to determine parallaxes to 232,545 stars of the RAVE survey using the parallaxes of Gaia DR1 as a reference. To search for twins in this large dataset, we apply the t-stochastic neighbour embedding t-SNE projection which distributes the data according to their spectral morphology on a two dimensional map. From this map we choose the twin candidates for which we calculate a chi^2 to select the best sets of twins. Our results show a competitive performance when compared to other model-dependent methods relying on stellar parameters and isochrones. The power of the method is shown by finding that the accuracy of our results is not significantly affected if the stars are normal or peculiar since the method is model free. We find twins for 60% of the RAVE sample which is not contained in TGAS or that have TGAS uncertainties which are larger than 20%. We could determine parallaxes with typical errors of 28%. We provide a complementary dataset for the RAVE stars not covered by TGAS, or that have TGAS uncertainties which are larger than 20%, with model-free parallaxes scaled to the Gaia measurements.
The new data release (DR5) of the RAdial Velocity Experiment (RAVE) includes radial velocities of 520,781 spectra of 457,588 individual stars, of which 215,590 individual stars are released in the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. T
The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric para
The internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and ve
A pioneering study showed that the fine structure in the luminosity function (LF) of young star clusters contains information about the evolutionary stage (age) and composition of the stellar population. The notable features include the H-peak, which
Stellar clusters are important for astrophysics in many ways, for instance as optimal tracers of the Galactic populations to which they belong or as one of the best test bench for stellar evolutionary models. Gaia DR1, with TGAS, is just skimming the