ترغب بنشر مسار تعليمي؟ اضغط هنا

An updated Type II supernova Hubble diagram

115   0   0.0 ( 0 )
 نشر من قبل Elisabeth Gall
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 < z < 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed SN II-P is PS1-13bni (z = 0.335 +0.009 -0.012), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe II 5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe II 5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions.



قيم البحث

اقرأ أيضاً

Gamma ray bursts (GRBs) have recently attracted much attention as a possible way to extend the Hubble diagram to very high redshift. To this aim, the luminosity (or isotropic emitted energy) of a GRB at redshift z must be evaluated from a correlation with a distance independent quantity so that one can then solve for the luminosity distance D_L(z) and hence the distance modulus mu(z). Averaging over five different two parameters correlations and using a fiducial cosmological model to calibrate them, Schaefer (2007) has compiled a sample of 69 GRBs with measured mu(z) which has since then been widely used to constrain cosmological parameters. We update here that sample by many aspects. First, we add a recently found correlation for the X - ray afterglow and use a Bayesian inspired fitting method to calibrate the different GRBs correlations known insofar assuming a fiducial LCDM model in agreement with the recent WMAP5 data. Averaging over six correlations, we end with a new GRBs Hubble diagram comprising 83 objects. We also extensively explore the impact of varying the fiducial cosmological model considering how the estimated mu(z) change as a function of the $(Omega_M, w_0, w_a)$ parameters of the Chevallier - Polarski - Linder phenomenological dark energy equation of state. In order to avoid the need of assuming an {it a priori} cosmological model, we present a new calibration procedure based on a model independent local regression estimate of mu(z) using the Union SNeIa sample to calibrate the GRBs correlations. This finally gives us a GRBs Hubble diagram made out of 69 GRBs whose estimated distance modulus mu(z) is almost independent on the underlying cosmological model.
The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on phot ometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey-II SN, and the Supernova Legacy Survey. Applying the Photometric Colour Method (PCM) to 73 Type II supernovae (SNe~II) with a redshift range of 0.01--0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe~II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag is derived, i.e., 13% in distance uncertainties. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat Universe and using the PCM, we derive a Universes matter density: $Omega_{m}$=0.32$^{+0.30}_{-0.21}$ providing a new independent evidence for dark energy at the level of two sigma.
We main goal of this paper is to test whether the NIR peak magnitudes of SNe Ia could be accurately estimated with only a single observation obtained close to maximum light, provided the time of B band maximum and the optical stretch parameter are kn own. We obtained multi-epoch UBVRI and single-epoch J and H photometric observations of 16 SNe Ia in the redshift range z=0.037-0.183, doubling the leverage of the current SN Ia NIR Hubble diagram and the number of SNe beyond redshift 0.04. This sample was analyzed together with 102 NIR and 458 optical light curves (LCs) of normal SNe Ia from the literature. The analysis of 45 well-sampled NIR LCs shows that a single template accurately describes them if its time axis is stretched with the optical stretch parameter. This allows us to estimate the NIR peak magnitudes even with one observation obtained within 10 days from B-band maximum. We find that the NIR Hubble residuals show weak correlation with DM_15 and E(B-V), and for the first time we report a possible dependence on the J_max-H_max color. The intrinsic NIR luminosity scatter of SNe Ia is estimated to be around 0.10 mag, which is smaller than what can be derived for a similarly heterogeneous sample at optical wavelengths. In conclusion, we find that SNe Ia are at least as good standard candles in the NIR as in the optical. We showed that it is feasible to extended the NIR SN Ia Hubble diagram to z=0.2 with very modest sampling of the NIR LCs, if complemented by well-sampled optical LCs. Our results suggest that the most efficient way to extend the NIR Hubble diagram to high redshift would be to obtain a single observation close to the NIR maximum. (abridged)
We present year-long, near-infrared Hubble Space Telescope WFC3 observations used to search for Mira variables in NGC 1559, the host galaxy of the Type Ia supernova (SN Ia) 2005df. This is the first dedicated search for Miras, highly-evolved low-mass stars, in a SN Ia host and subsequently the first calibration of the SN Ia luminosity using Miras in a role historically played by Cepheids. We identify a sample of 115 O-rich Miras with P < 400 days based on their light curve properties. We find that the scatter in the Mira Period-Luminosity Relation (PLR) is comparable to Cepheid PLRs seen in SN Ia supernova host galaxies. Using a sample of O-rich Miras discovered in NGC 4258 with HST F160W and its maser distance, we measure a distance modulus for NGC 1559 of mu1559 = 31.41 +/- 0.050 (statistical) +/- 0.060 (systematic) mag. Based on the light curve of the normal, well-observed, low-reddening SN 2005df, we obtain a measurement of the fiducial SN Ia absolute magnitude of MB0 = -19.27 +/- 0.13 mag. With the Hubble diagram of SNe Ia we find H0 = 72.7 +/- 4.6 kms-1 Mpc-1. Combining the calibration from the NGC 4258 megamaser and the Large Magellanic Cloud detached eclipsing binaries gives a best value of H0 = 73.3 +/- 4.0 km s-1 Mpc-1. This result is within 1-sigma of the Hubble constant derived using Cepheids and multiple calibrating SNe Ia. This is the first of four expected calibrations of the SN Ia luminosity from Miras which should reduce the error in H0 via Miras to ~3%. In light of the present Hubble tension and JWST, Miras have utility in the extragalactic distance scale to check Cepheid distances or calibrate nearby SNe in early-type host galaxies that would be unlikely targets for Cepheid searches.
We present a Hubble diagram of type II supernovae using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I (CSP) for which optical and near-infrared light -curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the $V$ band and the second a colour term. We obtain a dispersion of 0.44 mag using a combination of the $(V-i)$ colour and the $r$ band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric colour method (PCM) with the standardised candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag which compares with 0.43 mag from the PCM, for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow-up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا