ترغب بنشر مسار تعليمي؟ اضغط هنا

Geodesic length spectrum of hyperelliptic connected components

96   0   0.0 ( 0 )
 نشر من قبل Erwan Lanneau
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a general framework for studying pseudo-Anosov homeomorphisms on translation surfaces. This new approach, among other consequences, allows us to compute the systole of the Teichmueller geodesic flow restricted to the hyperelliptic connected components, settling a question of Farb. We stress that all proofs and computations are performed without the help of a computer. As a byproduct, our methods give a way to describe the bottom of the lengths spectrum of the hyperelliptic components.



قيم البحث

اقرأ أيضاً

We give a new upper bound on the stable commutator length of Dehn twists in hyperelliptic mapping class groups, and determine the stable commutator length of some elements. We also calculate values and the defects of homogeneous quasimorphisms derive d from omega-signatures, and show that they are linearly independent in the mapping class groups of pointed 2-spheres when the number of points is small.
We study amenability of definable groups and topological groups, and prove various results, briefly described below. Among our main technical tools, of interest in its own right, is an elaboration on and strengthening of the Massicot-Wagner version of the stabilizer theorem, and also some results about measures and measure-like functions (which we call means and pre-means). As an application we show that if $G$ is an amenable topological group, then the Bohr compactification of $G$ coincides with a certain ``weak Bohr compactification introduced in [24]. In other words, the conclusion says that certain connected components of $G$ coincide: $G^{00}_{topo} = G^{000}_{topo}$. We also prove wide generalizations of this result, implying in particular its extension to a ``definable-topological context, confirming the main conjectures from [24]. We also introduce $bigvee$-definable group topologies on a given $emptyset$-definable group $G$ (including group topologies induced by type-definable subgroups as well as uniformly definable group topologies), and prove that the existence of a mean on the lattice of closed, type-definable subsets of $G$ implies (under some assumption) that $cl(G^{00}_M) = cl(G^{000}_M)$ for any model $M$. Thirdly, we give an example of a $emptyset$-definable approximate subgroup $X$ in a saturated extension of the group $mathbb{F}_2 times mathbb{Z}$ in a suitable language (where $mathbb{F}_2$ is the free group in 2-generators) for which the $bigvee$-definable group $H:=langle X rangle$ contains no type-definable subgroup of bounded index. This refutes a conjecture by Wagner and shows that the Massicot-Wagner approach to prove that a locally compact (and in consequence also Lie) ``model exists for each approximate subgroup does not work in general (they proved in [29] that it works for definably amenable approximate subgroups).
Let $S$ be a compact, connected, oriented surface, possibly with boundary, of negative Euler characteristic. In this article we extend Lindenstrauss-Mirzakhanis and Hamenstadts classification of locally finite mapping class group invariant ergodic me asures on the space of measured laminations $mathcal{M}mathcal{L}(S)$ to the space of geodesic currents $mathcal{C}(S)$, and we discuss the homogeneous case. Moreover, we extend Lindenstrauss-Mirzakhanis classification of orbit closures to $mathcal{C}(S)$. Our argument relies on their results and on the decomposition of a current into a sum of three currents with isotopically disjoint supports: a measured lamination without closed leaves, a simple multi-curve and a current that binds its hull.
This paper is devoted to the classification of connected components of Prym eigenform loci in the strata H(2,2)^odd and H(1,1,2) in the Abelian differentials bundle in genus 3. These loci, discovered by McMullen are GL^+(2,R)-invariant submanifolds ( of complex dimension 3) that project to the locus of Riemann surfaces whose Jacobian variety has a factor admitting real multiplication by some quadratic order Ord_D. It turns out that these subvarieties can be classified by the discriminant D of the corresponding quadratic orders. However there algebraic varieties are not necessarily irreducible. The main result we show is that for each discriminant D the corresponding locus has one component if D is congruent to 0 or 4 mod 8, two components if D is congruent to 1 mod 8, and is empty otherwise. Our result contrasts with the case of Prym eigenform loci in the strata H(1,1) (studied by McMullen) that is connected for every discriminant D.
We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space $X$ and any sublinear function $kappa$, we construct a boundary for $X$, de noted $mathcal{partial}_{kappa} X$, that is quasi-isometrically invariant and metrizable. As an application, we show that when $G$ is the mapping class group of a finite type surface, or a relatively hyperbolic group, then with minimal assumptions the Poisson boundary of $G$ can be realized on the $kappa$-Morse boundary of $G$ equipped the word metric associated to any finite generating set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا