ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the Type Ic SN 2004aw: a Moderately Energetic Explosion of a Massive C+O Star without a GRB

61   0   0.0 ( 0 )
 نشر من قبل Elena Pian
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P.A. Mazzali




اسأل ChatGPT حول البحث

An analysis of the Type Ic supernova (SN) 2004aw is performed by means of models of the photospheric and nebular spectra and of the bolometric light curve. SN2004aw is shown not to be ``broad-lined, contrary to previous claims, but rather a ``fast-lined SN Ic. The spectral resemblance to the narrow-lined Type Ic SN1994I, combined with the strong nebular [O I] emission and the broad light curve, point to a moderately energetic explosion of a massive C+O star. The ejected 56Ni mass is ~0.2 Msun. The ejecta mass as constrained by the models is ~3-5 Msun, while the kinetic energy is estimated as KE ~3-6 e51 ergs. The ratio KE/Mej, the specific energy which influences the shape of the spectrum, is therefore ~1. The corresponding zero-age main-sequence mass of the progenitor star may have been ~23-28 Msun. Tests show that a flatter outer density structure may have caused a broad-lined spectrum at epochs before those observed without affecting the later epochs when data are available, implying that our estimate of KE is a lower limit. SN2004aw may have been powered by either a collapsar or a magnetar, both of which have been proposed for gamma-ray burst-supernovae. Evidence for this is seen in the innermost layers, which appear to be highly aspherical as suggested by the nebular line profiles. However, any engine was not extremely powerful, as the outer ejecta are more consistent with a spherical explosion and no gamma-ray burst was detected in coincidence with SN2004aw.



قيم البحث

اقرأ أيضاً

Optical and near-infrared observations of the Type Ic supernova (SN) 2004aw are presented, obtained from day -3 to day +413 with respect to the B-band maximum. The photometric evolution is characterised by a comparatively slow post-maximum decline of the light curves. The peaks in redder bands are significantly delayed relative to the bluer bands, the I-band maximum occurring 8.4 days later than that in B. With an absolute peak magnitude of -18.02 in the V band the SN can be considered fairly bright, but not exceptional. This also holds for the U through I bolometric light curve, where SN 2004aw has a position intermediate between SNe 2002ap and 1998bw. Spectroscopically SN 2004aw provides a link between a normal Type Ic supernova like SN 1994I and the group of broad-lined SNe Ic. The spectral evolution is rather slow, with a spectrum at day +64 being still predominantly photospheric. The shape of the nebular [O I] 6300,6364 line indicates a highly aspherical explosion. Helium cannot be unambiguously identified in the spectra, even in the near-infrared. Using an analytical description of the light curve peak we find that the total mass of the ejecta in SN 2004aw is 3.5-8.0 M_Sun, significantly larger than in SN 1994I, although not as large as in SN 1998bw. The same model suggests that about 0.3 M_Sun of {56}Ni has been synthesised in the explosion. No connection to a GRB can be firmly established.
Every supernova hitherto observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95-130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.
We present the discovery and extensive early-time observations of the Type Ic supernova (SN) PTF12gzk. Our finely sampled light curves show a rise of 0.8mag within 2.5hr. Power-law fits [f(t)sim(t-t_0)^n] to these data constrain the explosion date to within one day. We cannot rule out the expected quadratic fireball model, but higher values of n are possible as well for larger areas in the fit parameter space. Our bolometric light curve and a dense spectral sequence are used to estimate the physical parameters of the exploding star and of the explosion. We show that the photometric evolution of PTF12gzk is slower than that of most SNe Ic, and its high ejecta velocities (~30,000km/s four days after explosion) are closer to the observed velocities of broad-lined SNe Ic associated with gamma-ray bursts (GRBs) than to the observed velocities in normal Type Ic SNe. The high velocities are sustained through the SN early evolution, and are similar to those of GRB-SNe when the SN reach peak magnitude. By comparison with the spectroscopically similar SN 2004aw, we suggest that the observed properties of PTF12gzk indicate an initial progenitor mass of 25-35 solar mass and a large (5-10E51 erg) kinetic energy, close to the regime of GRB-SN properties. The host-galaxy characteristics are consistent with GRB-SN hosts, and not with normal SN Ic hosts as well, yet this SN does not show the broad lines over extended periods of time that are typical of broad-line Type Ic SNe.
Long-duration gamma-ray bursts (GRBs) at z < 1 are in most cases found to be accompanied by bright, broad-lined Type Ic supernovae (SNe Ic-BL). The highest-energy GRBs are mostly located at higher redshifts, where the associated SNe are hard to detec t observationally. Here we present early and late observations of the optical counterpart of the very energetic GRB 130427A. Despite its moderate redshift z = 0.3399+/-0.0002, GRB 130427A is at the high end of the GRB energy distribution, with an isotropic-equivalent energy release of Eiso ~ 9.6x10^53 erg, more than an order of magnitude more energetic than other GRBs with spectroscopically confirmed SNe. In our dense photometric monitoring, we detect excess flux in the host-subtracted r-band light curve, consistent with what expected from an emerging SN, ~0.2 mag fainter than the prototypical SN 1998bw. A spectrum obtained around the time of the SN peak (16.7 days after the GRB) reveals broad undulations typical of SNe Ic-BL, confirming the presence of a SN, designated SN 2013cq. The spectral shape and early peak time are similar to those of the high expansion velocity SN 2010bh associated with GRB 100316D. Our findings demonstrate that high-energy long-duration GRBs, commonly detected at high redshift, can also be associated with SNe Ic-BL, pointing to a common progenitor mechanism.
The properties of the bright and energetic Type Ic SN 1997ef are investigated using a Monte Carlo spectrum synthesis code. Analysis of the earliest spectra is used to determine the time of outburst. The changing features of the spectrum and the light curve are used to probe the ejecta and to determine their composition, verifying the results of explosion calculations. Since synthetic spectra computed using our best explosion model CO100 are only moderately good reproductions of the observations, the inverse approach is adopted, and a density structure is derived by demanding that it gives the best possible fit to the observed spectrum at every epoch analysed. It is found that the density structure of model CO100 is adequate at intermediate velocities (5000--25000 km/s), but that a slower density decline ($rho propto r^{-4}$) is required to obtain the extensive line blending at high velocities (25000--50000 km/s). The `best fit density distribution results in somewhat different parameters for the SN, namely an ejecta mass of 9.6$M_odot$ and an explosion kinetic energy of 1.75 x 10^{52} erg. The modified density structure is used to compute a synthetic light curve, which is found to agree very well with the observed bolometric light curve around maximum. The amount of radioactive $^{56}$Ni produced by the SN is confirmed at 0.13$M_odot$. In the context of an axisymmetric explosion, a somewhat smaller kinetic energy than that of SN 1998bw may have resulted from the non alignment of the symmetry axis of the SN and the line of sight. This might also explain the lack of evidence for a Gamma Ray Burst correlated with SN 1997ef.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا