ﻻ يوجد ملخص باللغة العربية
A mixed dimensional system of fermions in two layers immersed in a Bose-Einstein condensate (BEC) is shown to be a promising setup to realise topological superfluids with time-reversal symmetry (TRS). The induced interaction between the fermions mediated by the BEC gives rise to a competition between p-wave pairing within each layer and s-wave pairing between the layers. When the layers are far apart, intra-layer pairing dominates and the system forms a topological superfluid either with or without TRS. With decreasing layer separation or increasing BEC coherence length, inter-layer pairing sets in. We show that this leads either to a second order transition breaking TRS where the edge modes gradually become gapped, or to a first order transition to a topologically trivial s-wave superfluid. Our results provide a realistic roadmap for experimentally realising a topological superfluid with TRS in a cold atomic system.
We use kinetic theory to model the dynamics of a small Bose condensed cloud of heavy particles moving through a larger degenerate Fermi gas of light particles. Varying the Bose-Fermi interaction, we find a crossover between bulk and surface dominated
We investigate collective excitations of density fluctuations and a dynamic density structure factor in a mixture of Bose and Fermi gases in a normal phase. With decreasing temperature, we find that the frequency of the collective excitation deviates
We consider a Bose-Fermi mixture in the molecular limit of the attractive interaction between fermions and bosons. For a boson density smaller or equal to the fermion density, we show analytically how a T-matrix approach for the constituent bosons an
Cooper pairing caused by an induced interaction represents a paradigm in our description of fermionic superfluidity. Here, we present a strong coupling theory for the critical temperature of $p$-wave pairing between spin polarised fermions immersed i
We study the effects of interaction between bosons and fermions in a Bose-Fermi mixtures loaded in an optical lattice. We concentrate on the destruction of a bosonic Mott phase driven by repulsive interaction between bosons and fermions. Once the Mot