ﻻ يوجد ملخص باللغة العربية
The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic fields is the magnetogenesis in the primordial universe. Such magnetic fields are called primordial magnetic fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal history of the IGM gas. Hence the information of PMFs is expected to be imprinted on the anisotropies of the cosmic microwave background (CMB) through the thermal Sunyaev-Zeldovich (tSZ) effect in the IGM. In this study, given an initial power spectrum of PMFs as $P(k)propto B_{rm 1Mpc}^2 k^{n_{B}}$, we calculate dynamical and thermal evolutions of the IGM under the influence of PMFs, and compute the resultant angular power spectrum of the Compton $y$-parameter on the sky. As a result, we find that two physical processes driven by PMFs dominantly determine the power spectrum of the Compton $y$-parameter; (i) the heating due to the ambipolar diffusion effectively works to increase the temperature and the ionization fraction, and (ii) the Lorentz force drastically enhances the density contrast just after the recombination epoch. These facts result in making the tSZ angular power spectrum induced by the PMFs more remarkable at $ell >10^4$ than that by galaxy clusters even with $B_{rm 1Mpc}=0.1$ nG and $n_{B}=-1.0$ because the contribution from galaxy clusters decreases with increasing $ell$. The measurement of the tSZ angular power spectrum on high $ell$ modes can provide the stringent constraint on PMFs.
In the present universe, magnetic fields exist with various strengths and on various scales. One possible origin of these cosmic magnetic fields is the primordial magnetic fields (PMFs) generated in the early universe. PMFs are considered to contribu
We examine the thermal energy contents of the intergalactic medium (IGM) over three orders of magnitude in both mass density and gas temperature using thermal Sunyaev-Zeldovich effect (tSZE). The analysis is based on {it Planck} tSZE map and the cosm
We confront the universal pressure profile (UPP) proposed by~citet{Arnaud10} with the recent measurement of the cross-correlation function of the thermal Sunyaev-Zeldovich (tSZ) effect from Planck and weak gravitational lensing measurement from the R
The detection and characterization of primordial gravitational waves through their impact on the polarization anisotropies of the cosmic microwave background (CMB) is a primary science goal of current and future observations of the CMB. An ancillary
We propose the use of the kinetic Sunyaev-Zeldovich (kSZ) effect to probe the circumgalactic medium (CGM), with the aid of a spectroscopic survey covering the same area of a SZ survey. One can design an optimal estimator of the kSZ effect of the CGM