ﻻ يوجد ملخص باللغة العربية
In this paper, we establish two sufficient conditions for the strong ellipticity of any fourth-order elasticity tensor and investigate a class of tensors satisfying the strong ellipticity condition, the elasticity $mathscr{M}$-tensor. The first sufficient condition is that the strong ellipticity holds if the unfolding matrix of this fourth-order elasticity tensor can be modified into a positive definite one by preserving the summations of some corresponding entries. Second, an alternating projection algorithm is proposed to verify whether an elasticity tensor satisfies the first condition or not. Besides, the elasticity $mathscr{M}$-tensor is defined with respect to the M-eigenvalues of elasticity tensors. We prove that any nonsingular elasticity $mathscr{M}$-tensor satisfies the strong ellipticity condition by employing a Perron-Frobenius-type theorem for M-spectral radii of nonnegative elasticity tensors. Other equivalent definitions of nonsingular elasticity $mathscr{M}$-tensors are also established.
In this paper, we mainly discuss analytical expressions of positive definiteness for a special 4th order 3-dimensional symmetric tensor defined by the constructed model for a physical phenomenon. Firstly, an analytically necessary and sufficient cond
The geometrical description of a Hilbert space asociated with a quantum system considers a Hermitian tensor to describe the scalar inner product of vectors which are now described by vector fields. The real part of this tensor represents a flat Riema
Invariant operator-valued tensor fields on Lie groups are considered. These define classical tensor fields on Lie groups by evaluating them on a quantum state. This particular construction, applied on the local unitary group U(n)xU(n), may establish
The strict opositivity of 4th order symmetric tensor may apply to detect vacuum stability of general scalar potential. For finding analytical expressions of (strict) opositivity of 4th order symmetric tensor, we may reduce its order to 3rd order to b
The embedding of a manifold M into a Hilbert-space H induces, via the pull-back, a tensor field on M out of the Hermitian tensor on H. We propose a general procedure to compute these tensors in particular for manifolds admitting a Lie-group structure.