ﻻ يوجد ملخص باللغة العربية
The entanglement properties of the time periodic Kitaev chain with nearest neighbor and next nearest neighbor hopping, is studied. The cases of the exact eigenstate of the time periodic Hamiltonian, referred to as the Floquet ground state (FGS), as well as a physical state obtained from time-evolving an initial state unitarily under the influence of the time periodic drive are explored. Topological phases are characterized by different numbers of Majorana zero ($mathbb{Z}_0$) and $pi$ ($mathbb{Z}_{pi}$) modes, where the zero modes are present even in the absence of the drive, while the $pi$ modes arise due to resonant driving. The entanglement spectrum (ES) of the FGS as well as the physical state show topological Majorana modes whose number is different from that of the quasi-energy spectrum. The number of Majorana edge modes in the ES of the FGS vary in time from $|mathbb{Z}_0-mathbb{Z}_{pi}|$ to $mathbb{Z}_0+mathbb{Z}_{pi}$ within one drive cycle, with the maximal $mathbb{Z}_0+mathbb{Z}_{pi}$ modes appearing at a special time-reversal symmetric point of the cycle. For the physical state on the other hand, only the modes inherited from the initial wavefunction, namely the $mathbb{Z}_0$ modes, appear in the ES. The $mathbb{Z}_{pi}$ modes are absent in the physical state as they merge with the bulk excitations that are simultaneously created due to resonant driving. The topological properties of the Majorana zero and $pi$ modes in the ES are also explained by mapping the parent wavefunction to a Bloch sphere.
We gauge the fermion parity symmetry of the Kitaev chain. While the bulk of the model becomes an Ising chain of gauge-invariant spins in a tilted field, near the boundaries the global fermion parity symmetry survives gauging, leading to local gauge-i
Floquet Majorana edge modes capture the topological features of periodically driven superconductors. We present a Kitaev chain with multiple time periodic driving and demonstrate how the avoidance of bands crossing is altered, which gives rise to new
We describe a method to probe the quantum phase transition between the short-range topological phase and the long-range topological phase in the superconducting Kitaev chain with long-range pairing, both exhibiting subgap modes localized at the edges
Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings.
A minimal Kitaev-Gamma model has been recently investigated to understand various Kitaev systems. In the one-dimensional Kitaev-Gamma chain, an emergent SU(2)$_1$ phase and a rank-1 spin ordered phase with $O_hrightarrow D_4$ symmetry breaking were i