Synthesis, magnetic properties and electronic structure of S = 1/2 uniform spin chain system InCuPO5


الملخص بالإنكليزية

We have studied the structural, magnetic properties, and electronic structure of the compound InCuPO5 synthesized by solid state reaction method. The structure of InCuPO5 comprises of S = 1/2 uniform spin chains formed by corner-shared CuO4 units. Magnetic susceptibility chi(T) data shows a broad maximum at about 65 K, a characteristic feature of one-dimensional (1D) magnetism. The chi(T) data is fitted to the coupled, S = 1/2 Heisenberg antiferromagnetic (HAFM) uniform chain model that gives the intra-chain coupling (J/kB) between nearest neighbour Cu2+ ions as -100 K and the ratio of inter-chain to intra-chain coupling (J/J) as about 0.07. The exchange couplings estimated from the magnetic data analysis are in good agreement with the computed values from the electronic structure calculations based on density functional theory + Hubbard U (DFT+U) approach. The combination of theoretical and experimental analysis confirms that InCuPO5 is a candidate material for weakly coupled S = 1/2 uniform chains. A detailed theoretical analysis of the electronic structure further reveals that the system is insulating with a gap of 2.4 eV and a local moment of 0.70 muB /Cu.

تحميل البحث