We have studied the structural, magnetic properties, and electronic structure of the compound InCuPO5 synthesized by solid state reaction method. The structure of InCuPO5 comprises of S = 1/2 uniform spin chains formed by corner-shared CuO4 units. Magnetic susceptibility chi(T) data shows a broad maximum at about 65 K, a characteristic feature of one-dimensional (1D) magnetism. The chi(T) data is fitted to the coupled, S = 1/2 Heisenberg antiferromagnetic (HAFM) uniform chain model that gives the intra-chain coupling (J/kB) between nearest neighbour Cu2+ ions as -100 K and the ratio of inter-chain to intra-chain coupling (J/J) as about 0.07. The exchange couplings estimated from the magnetic data analysis are in good agreement with the computed values from the electronic structure calculations based on density functional theory + Hubbard U (DFT+U) approach. The combination of theoretical and experimental analysis confirms that InCuPO5 is a candidate material for weakly coupled S = 1/2 uniform chains. A detailed theoretical analysis of the electronic structure further reveals that the system is insulating with a gap of 2.4 eV and a local moment of 0.70 muB /Cu.