ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoemission Circular Dichroism and Spin Polarization of the Topological Surface States in Ultrathin Bi2Te3 Films

102   0   0.0 ( 0 )
 نشر من قبل Caizhi Xu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Circular dichroism (CD) observed by photoemission, being sensitive to the orbital and spin angular momenta of the electronic states, is a powerful probe of the nontrivial surface states of topological insulators, but the experimental results thus far have eluded a comprehensive description. We report a study of Bi2Te3 films with thicknesses ranging from one quintuple layer (two-dimensional limit) to twelve layers (bulk limit) over a wide range of incident photon energy. The data show complex variations in magnitude and sign reversals, which are nevertheless well described by a theoretical calculation including all three photoemission mechanisms: dipole transition, surface photoemission, and spin-orbit coupling. The results establish the nontrivial connection between the spin-orbit texture and CD.



قيم البحث

اقرأ أيضاً

Topological insulators have been successfully identified by spin-resolved photoemission but the spin polarization remained low (~20%). We show for Bi2Te3 that the in-gap surface state is much closer to full spin polarization with measured values reac hing 80% at the Fermi level. When hybridizing with the bulk it remains highly spin polarized which may explain recent unusual quantum interference results on Bi2Se3. The topological surface state shows a large circular dichroism in the photoelectron angle distribution with an asymmetry of ~20% the sign of which corresponds to that of the measured spin.
The helical Dirac fermions at the surface of topological insulators show a strong circular dichroism which has been explained as being due to either the initial-state spin angular momentum, the initial-state orbital angular momentum, or the handednes s of the experimental setup. All of these interpretations conflict with our data from Bi2Te3 which depend on the photon energy and show several sign changes. Our one-step photoemission calculations coupled to ab initio theory confirm the sign change and assign the dichroism to a final-state effect. The spin polarization of the photoelectrons, instead, remains a reliable probe for the spin in the initial state.
161 - Yihua Wang , Nuh Gedik 2012
Topological insulators are a new phase of matter that exhibits exotic surface electronic properties. Determining the spin texture of this class of material is of paramount importance for both fundamental understanding of its topological order and fut ure spin-based applications. In this article, we review the recent experimental and theoretical studies on the differential coupling of left- versus right-circularly polarized light to the topological surface states in angle-resolved photoemission spectroscopy. These studies have shown that the polarization of light and the experimental geometry plays a very important role in both photocurrent intensity and spin polarization of photoelectrons emitted from the topological surface states. A general photoemission matrix element calculation with spin-orbit coupling can quantitatively explain the observations and is also applicable to topologically trivial systems. These experimental and theoretical investigations suggest that optical excitation with circularly polarized light is a promising route towards mapping the spin-orbit texture and manipulating the spin orientation in topological and other spin-orbit coupled materials.
Quantitative understanding of the relationship between quantum tunneling and Fermi surface spin polarization is key to device design using topological insulator surface states. By using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films across the metal-to-insulator transition, we observe that for a given film thickness, the spin polarization is large for momenta far from the center of the surface Brillouin zone. In addition, the polarization decreases significantly with enhanced tunneling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. Our theoretical model calculations capture this delicate relationship between quantum tunneling and Fermi surface spin polarization. Our results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nano-device.
180 - M. R. Scholz 2011
Topological insulators(1-8) are a novel form of matter which features metallic surface states with quasirelativistic dispersion similar to graphene(9). Unlike graphene, the locking of spin and momentum and the protection by time-reversal symmetry(1-8 ) open up tremendous additional possibilities for external control of transport properties(10-18). Here we show by angle-resolved photoelectron spectroscopy that the topological sur-face states of Bi2Te3 and Bi2Se3 are stable against the deposition of Fe without opening a band gap. This stability extends to low submonolayer coverages meaning that the band gap reported recently(19) for Fe on Bi2Se3 is incorrect as well as to complete monolayers meaning that topological surface states can very well exist at interfaces with ferromagnets in future devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا