ترغب بنشر مسار تعليمي؟ اضغط هنا

Shape stability of pasta phases: Lasagna case

68   0   0.0 ( 0 )
 نشر من قبل Sebastian Kubis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stability of periodically placed slabs occurring in neutron stars (lasagna phase) is examined by exact geometrical methods for the first time. It appears that the slabs are stable against any shape perturbation modes for the whole range of volume fraction occupied by the slab. The calculations are done in the framework of the liquid drop model and obtained results are universal - they do not depend on model parameters like surface tension or charge density. The results shows that the transition to other pasta shapes requires crossing the finite energy barrier



قيم البحث

اقرأ أيضاً

The stability of pasta phases in cylindrical and spherical Wigner-Seitz (W-S) cells is examined. The electric Bond number is introduced as the ratio of electric and surface energies. In the case of a charged rod in vacuum, other kinds of instabilitie s appear in addition to the well known Plateau- Rayleigh mode. For the case of a rod confined in a W-S cell the variety of unstable modes is reduced. It comes from the virial theorem, which bounds the value of the Bond number from above and reduces the role played by electric forces. A similar analysis is done for the spherical W-S cell, where it appears that the inclusion of the virial theorem stabilizes all of the modes.
In this work the low density regions of nuclear and neutron star matter are studied. The search for the existence of pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter in beta equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in the coexistence phases regime and we present results that show the existence of the pasta phases subject to some choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in supernova simulations.
Nuclear pasta, with nucleons arranged into tubes, sheets, or other complex shapes, is expected in core collapse supernovae (SNe) at just below nuclear density. We calculate the additional opacity from neutrino-pasta coherent scattering using molecula r dynamics simulations. We approximately include this opacity in simulations of SNe. We find that pasta slows neutrino diffusion and greatly increases the neutrino signal at late times of 10 or more seconds after stellar core collapse. This signal, for a galactic SN, should be clearly visible in large detectors such as Super-Kamiokande.
The effect of pasta phases on the quark-hadron phase transition is investigated for a set of relativistic mean-field equations of state for both hadron and quark matter. The results of the full numerical solution with pasta phases are compared with t hose of an interpolating construction used in previous works, for which we demonstrate an adequate description of the numerical results. A one-to-one mapping of the free parameter of the construction to the physical surface tension of the quark-hadron interface is obtained for which a fit formula is given. For each pair of quark and hadron matter models the critical value of the surface tension is determined, above which the phase transition becomes close to the Maxwell construction. This result agrees well with earlier theoretical estimates. The study is extended to neutron star matter in beta equilibrium with electrons and muons and is applied to investigate the effect of pasta phases on the structure of hybrid compact stars and the robustness of a possible third family solution.
We study the quark-hadron mixed phase in proto-neutron stars with the finite-size effects. In the calculations of pasta structures appeared in the mixed phase, the Gibbs conditions require the pressure balance and chemical equilibrium between two pha ses besides the thermal equilibrium. We find that the region of the mixed phase is limited due to thermal instability. Moreover, we study the effects of neutrinos to the pasta structures. As a result, we find that the existence of neutrinos make the pasta structures unstable, too. These characteristic features of the hadron-quark mixed phase should be important for the middle stage of the evolutions of proto-neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا