ﻻ يوجد ملخص باللغة العربية
The stability of periodically placed slabs occurring in neutron stars (lasagna phase) is examined by exact geometrical methods for the first time. It appears that the slabs are stable against any shape perturbation modes for the whole range of volume fraction occupied by the slab. The calculations are done in the framework of the liquid drop model and obtained results are universal - they do not depend on model parameters like surface tension or charge density. The results shows that the transition to other pasta shapes requires crossing the finite energy barrier
The stability of pasta phases in cylindrical and spherical Wigner-Seitz (W-S) cells is examined. The electric Bond number is introduced as the ratio of electric and surface energies. In the case of a charged rod in vacuum, other kinds of instabilitie
In this work the low density regions of nuclear and neutron star matter are studied. The search for the existence of pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees
Nuclear pasta, with nucleons arranged into tubes, sheets, or other complex shapes, is expected in core collapse supernovae (SNe) at just below nuclear density. We calculate the additional opacity from neutrino-pasta coherent scattering using molecula
The effect of pasta phases on the quark-hadron phase transition is investigated for a set of relativistic mean-field equations of state for both hadron and quark matter. The results of the full numerical solution with pasta phases are compared with t
We study the quark-hadron mixed phase in proto-neutron stars with the finite-size effects. In the calculations of pasta structures appeared in the mixed phase, the Gibbs conditions require the pressure balance and chemical equilibrium between two pha