ﻻ يوجد ملخص باللغة العربية
The geometry of twisted null geodesic congruences in gravitational plane wave spacetimes is explored, with special focus on homogeneous plane waves. The role of twist in the relation of the Rosen coordinates adapted to a null congruence with the fundamental Brinkmann coordinates is explained and a generalised form of the Rosen metric describing a gravitational plane wave is derived. The Killing vectors and isometry algebra of homogeneous plane waves (HPWs) are described in both Brinkmann and twisted Rosen form and used to demonstrate the coset space structure of HPWs. The van Vleck-Morette determinant for twisted congruences is evaluated in both Brinkmann and Rosen descriptions. The twisted null congruences of the Ozsvath-Schucking,`anti-Mach plane wave are investigated in detail. These developments provide the necessary geometric toolkit for future investigations of the role of twist in loop effects in quantum field theory in curved spacetime, where gravitational plane waves arise generically as Penrose limits; in string theory, where they are important as string backgrounds; and potentially in the detection of gravitational waves in astronomy.
We give a higher even dimensional extension of vacuum colliding gravitational plane waves with the combinations of collinear and non-collinear polarized four-dimensional metric. The singularity structure of space-time depends on the parameters of the solution.
We discuss dynamical aspects of gravitational plane waves in Einstein theory with massless scalar fields. The general analytic solution describes colliding gravitational waves with constant polarization, which interact with scalar waves and, for gene
The issue of the gauge invariance of gravitational waves arises if they are produced in the early universe at second-order in perturbation theory. We address it by dividing the discussion about the gauge invariance in three parts: the production of g
We discuss a proposal on how gravitational collapse of a NEC (Null Energy Condition) violating spherically symmetric fluid distribution can avoid the formation of a zero proper volume singularity and eventually lead to a Lorentzian wormhole geometry.
We investigate the influence of a gravitational wave background on particles in circular motion. We are especially interested in waves leading to stationary orbits. This consideration is limited to circular orbits perpendicular to the incidence direc