Multiscale interaction between a large scale magnetic island and small scale turbulence


الملخص بالإنكليزية

Multiscale interaction between the magnetic island and turbulence has been demonstrated through simultaneous two-dimensional measurements of turbulence and temperature and flow profiles. The magnetic island and turbulence mutually interact via the coupling between the electron temperature ($T_e$) gradient, the $T_e$ turbulence, and the poloidal flow. The $T_e$ gradient altered by the magnetic island is peaked outside and flattened inside the island. The $T_e$ turbulence can appear in the increased $T_e$ gradient regions. The combined effects of the $T_e$ gradient and the the poloidal flow shear determine two-dimensional distribution of the $T_e$ turbulence. When the reversed poloidal flow forms, it can maintain the steepest $T_e$ gradient and the magnetic island acts more like a electron heat transport barrier. Interestingly, when the $T_e$ gradient, the $T_e$ turbulence, and the flow shear increase beyond critical levels, the magnetic island turns into a fast electron heat transport channel, which directly leads to the minor disruption.

تحميل البحث