ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce a rational $tau$ invariant for rationally null-homologous knots in contact 3-manifolds with nontrivial Ozsv{a}th-Szab{o} contact invariants. Such an invariant is an upper bound for the sum of rational Thurston-Bennequin invariant and the rational rotation number of the Legendrian representatives of the knot. In the special case of Floer simple knots in L-spaces, we can compute the rational $tau$ invariants by correction terms.
We give combinatorial descriptions of the Heegaard Floer homology groups for arbitrary three-manifolds (with coefficients in Z/2). The descriptions are based on presenting the three-manifold as an integer surgery on a link in the three-sphere, and th
In this paper, sufficient conditions for contact $(+1)$-surgeries along Legendrian knots in contact rational homology 3-spheres to have vanishing contact invariants or to be overtwisted are given. They can be applied to study contact $(pm1)$-surgerie
In this short note, we exhibit an infinite family of hyperbolic rational homology $3$--spheres which do not admit any fillable contact structures. We also note that most of these manifolds do admit tight contact structures.
We prove that the LOSS and GRID invariants of Legendrian links in knot Floer homology behave in certain functorial ways with respect to decomposable Lagrangian cobordisms in the symplectization of the standard contact structure on $mathbb{R}^3$. Our
We present an overview of the study of the Thurston norm, introduced by W. P. Thurston in the seminal paper A norm for the homology of 3-manifolds (written in 1976 and published in 1986). We first review fundamental properties of the Thurston norm of