ﻻ يوجد ملخص باللغة العربية
Two dimensional (2D) materials provide a unique platform for spintronics and valleytronics due to the ability to combine vastly different functionalities into one vertically-stacked heterostructure, where the strengths of each of the constituent materials can compensate for the weaknesses of the others. Graphene has been demonstrated to be an exceptional material for spin transport at room temperature, however it lacks a coupling of the spin and optical degrees of freedom. In contrast, spin/valley polarization can be efficiently generated in monolayer transition metal dichalcogenides (TMD) such as MoS2 via absorption of circularly-polarized photons, but lateral spin or valley transport has not been realized at room temperature. In this letter, we fabricate monolayer MoS2/few-layer graphene hybrid spin valves and demonstrate, for the first time, the opto-valleytronic spin injection across a TMD/graphene interface. We observe that the magnitude and direction of spin polarization is controlled by both helicity and photon energy. In addition, Hanle spin precession measurements confirm optical spin injection, spin transport, and electrical detection up to room temperature. Finally, analysis by a one-dimensional drift-diffusion model quantifies the optically injected spin current and the spin transport parameters. Our results demonstrate a 2D spintronic/valleytronic system that achieves optical spin injection and lateral spin transport at room temperature in a single device, which paves the way for multifunctional 2D spintronic devices for memory and logic applications.
Valley degree of freedom in the 2D semiconductor is a promising platform for the next generation optoelectronics. Electrons in different valleys can have opposite Berry curvature, leading to the valley Hall effect (VHE). However, VHE without the plas
Semiconducting monolayer of 2D material are able to concatenate multiple interesting properties into a single component. Here, by combining opto-mechanical and electronic measurements, we demonstrate the presence of a partial 2H-1T phase transition i
We study the intra-valley spin-orbit mediated spin relaxation in monolayers of MoS2 within a two bands effective Hamiltonian. The intrinsic spin splitting of the valence band as well as a Rashba-like coupling due to the breaking of the out-of-plane i
We present a study of the effects of inelastic scattering on the transport properties of various nanoscale devices, namely H$_2$ molecules sandwiched between Pt contacts, and a spin-valve made by an organic molecule attached to model half-metal ferro
We present inverted spin-valves fabricated from CVD-grown bilayer graphene (BLG) that show more than a doubling in device performance at room temperature compared to state-of-the art bilayer graphene spin-valves. This is made possible by a PDMS dropl