ﻻ يوجد ملخص باللغة العربية
Content popularity prediction has been extensively studied due to its importance and interest for both users and hosts of social media sites like Facebook, Instagram, Twitter, and Pinterest. However, existing work mainly focuses on modeling popularity using a single metric such as the total number of likes or shares. In this work, we propose Diffusion-LSTM, a memory-based deep recurrent network that learns to recursively predict the entire diffusion path of an image through a social network. By combining user social features and image features, and encoding the diffusion path taken thus far with an explicit memory cell, our model predicts the diffusion path of an image more accurately compared to alternate baselines that either encode only image or social features, or lack memory. By mapping individual users to user prototypes, our model can generalize to new users not seen during training. Finally, we demonstrate our models capability of generating diffusion trees, and show that the generated trees closely resemble ground-truth trees.
Online Social Networks (OSN) are among the most popular applications in todays Internet. Decentralized online social networks (DOSNs), a special class of OSNs, promise better privacy and autonomy than traditional centralized OSNs. However, ensuring a
Image sharing on online social networks (OSNs) has become an indispensable part of daily social activities, but it has also led to an increased risk of privacy invasion. The recent image leaks from popular OSN services and the abuse of personal photo
An increasing number of todays social interactions occurs using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service
Social networks have become ubiquitous in our daily life, as such it has attracted great research interests recently. A key challenge is that it is of extremely large-scale with tremendous information flow, creating the phenomenon of Big Data. Under
We present a method for accurately predicting the long time popularity of online content from early measurements of user access. Using two content sharing portals, Youtube and Digg, we show that by modeling the accrual of views and votes on content o