ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sun in transition? Persistence of near-surface structural changes through Cycle 24

77   0   0.0 ( 0 )
 نشر من قبل Rachel Howe
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the frequency shifts in low-degree helioseismic modes from the Birmingham Solar-Oscillations Network (BiSON) covering the period from 1985 - 2016, and compare them with a number of global activity proxies well as a latitudinally-resolved magnetic index. As well as looking at frequency shifts in different frequency bands, we look at a parametrization of the shift as a cubic function of frequency. While the shifts in the medium- and highfrequency bands are very well correlated with all of the activity indices (with the best correlation being with the 10.7 cm radio flux), we confirm earlier findings that there appears to have been a change in the frequency response to activity during solar cycle 23, and the low frequency shifts are less correlated with activity in the last two cycles than they were in Cycle 22. At the same time, the more recent cycles show a slight increase in their sensitivity to activity levels at medium and higher frequencies, perhaps because a greater proportion of activity is composed of weaker or more ephemeral regions. This lends weight to the speculation that a fundamental change in the nature of the solar dynamo may be in progress.



قيم البحث

اقرأ أيضاً

Helioseismic data for solar cycles 23 and 24 have shown unequivocally that solar dynamics changes with solar activity. Changes in solar structure have been more difficult to detect. Basu & Mandel (2004) had claimed that the then available data reveal ed changes in the HeII ionization zone of the Sun. The amount of change, however, indicated the need for larger than expected changes in the magnetic fields. Now that helioseismic data spanning two solar cycles are available, we have redone the analysis using improved fitting techniques. We find that there is indeed a change in the region around the HeII ionization zone that is correlated with activity. Since the data sets now cover two solar cycles, the time variation is easily discernible.
146 - A. A. Vidotto 2018
In the present work, we investigate how the large-scale magnetic field of the Sun, in its three vector components, has evolved during most of cycle 24, from 2010 Jan to 2018 Apr. To filter out the small-scale field of the Sun, present in high-resolut ion synoptic maps, we use a spherical harmonic decomposition method, which decomposes the solar field in multipoles with different l degrees. By summing together the low-l multipoles, we reconstruct the large-scale field at a resolution similar to observed stellar magnetic fields, which allows the direct comparison between solar and stellar magnetic maps. During cycle 24, the `Sun-as-a-star magnetic field shows a polarity reversal in the radial and meridional components, but not in the azimuthal component. The large-scale solar field remains mainly poloidal with > 70% of its energy contained in the poloidal component. During its evolution, the large-scale field is more axisymmetric and more poloidal when near minima in sunspot numbers, and with a larger intensity near maximum. There is a correlation between toroidal energy and sunspot number, which indicates that spot fields are major contributors to the toroidal large-scale energy of the Sun. The solar large-scale magnetic properties fit smoothly with observational trends of stellar magnetism reported in See et al. The toroidal (Etor) and poloidal (Epol) energies are related as Etor ~Epol^{1.38 pm 0.04}. Similar to the stellar sample, the large-scale field of the Sun shows a lack of toroidal non-axisymmetric field.
The paper presents results of a search for helioseismic events (sunquakes) produced by M-X class solar flares during Solar Cycle 24. The search is performed by analyzing photospheric Dopplergrams from Helioseismic Magnetic Imager (HMI). Among the tot al number of 500 M-X class flares, 94 helioseismic events were detected. Our analysis has shown that many strong sunquakes were produced by solar flares of low M class (M1-M5), while in some powerful X-class flares helioseismic waves were not observed or were weak. Our study also revealed that only several active regions were characterized by the most efficient generation of helioseismic waves during flares. We found that the sunquake power correlates with the maximum value of the soft X-ray flux time derivative better than with the X-ray class, indicating that the sunquake mechanism is associated with high-energy particles. We also show that the seismically active flares are more impulsive than the flares without helioseismic perturbations. We present a new catalog of helioseismic solar flares, which opens opportunities for performing statistical studies to better understand the physics of sunquakes as well as the flare energy release and transport.
Turbulent convection efficiently transports energy up to the solar photosphere, but its multi-scale nature and dynamic properties are still not fully understood. Several works in the literature have investigated the emergence of patterns of convectiv e and magnetic nature in the quiet Sun at spatial and temporal scales from granular to global. Aims. To shed light on the scales of organisation at which turbulent convection operates, and its relationship with the magnetic flux therein, we studied characteristic spatial and temporal scales of magnetic features in the quiet Sun. Methods. Thanks to an unprecedented data set entirely enclosing a supergranule, occurrence and persistence analysis of magnetogram time series were used to detect spatial and long-lived temporal correlations in the quiet Sun and to investigate their nature. Results. A relation between occurrence and persistence representative for the quiet Sun was found. In particular, highly recurrent and persistent patterns were detected especially in the boundary of the supergranular cell. These are due to moving magnetic elements undergoing motion that behaves like a random walk together with longer decorrelations ($sim2$ h) with respect to regions inside the supergranule. In the vertices of the supegranular cell the maximum observed occurrence is not associated with the maximum persistence, suggesting that there are different dynamic regimes affecting the magnetic elements.
We propose a novel approach to reconstruct the surface magnetic helicity density on the Sun or sun-like stars. The magnetic vector potential is determined via decomposition of vector magnetic field measurements into toroidal and poloidal components. The method is verified using data from a non-axisymmetric dynamo model. We apply the method to vector field synoptic maps from Helioseismic and Magnetic Imager (HMI) onboard of Solar Dynamics Observatory (SDO) to study evolution of the magnetic helicity density during solar cycle 24. It is found that the mean helicity density of the non-axisymmetric magnetic field of the Sun evolves in a way which is similar to that reported for the current helicity density of the solar active regions. It has predominantly the negative sign in the northern hemisphere, and it is positive in the southern hemisphere. Also, the hemispheric helicity rule for the non-axisymmetric magnetic field showed the sign inversion at the end of cycle 24. Evolution of magnetic helicity density of large-scale axisymmetric magnetic field is different from that expected in dynamo theory. On one hand, the mean large- and small-scale components of magnetic helicity density display the hemispheric helicity rule of opposite sign at the beginning of cycle 24. However, later in the cycle, the two helicities exhibit the same sign in contrast with the theoretical expectations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا