ﻻ يوجد ملخص باللغة العربية
Quantum walks have received a great deal of attention recently because they can be used to develop new quantum algorithms and to simulate interesting quantum systems. In this work, we focus on a model called staggered quantum walk, which employs advanced ideas of graph theory and has the advantage of including the most important instances of other discrete-time models. The evolution operator of the staggered model is obtained from a tessellation cover, which is defined in terms of a set of partitions of the graph into cliques. It is important to establish the minimum number of tessellations required in a tessellation cover, and what classes of graphs admit a small number of tessellations. We describe two main results: (1) infinite classes of graphs where we relate the chromatic number of the clique graph to the minimum number of tessellations required in a tessellation cover, and (2) the problem of deciding whether a graph is $k$-tessellable for $kge 3$ is NP-complete.
A tessellation of a graph is a partition of its vertices into vertex disjoint cliques. A tessellation cover of a graph is a set of tessellations that covers all of its edges. The $t$-tessellability problem aims to decide whether there is a tessellati
The canonical tree-decomposition theorem, given by Robertson and Seymour in their seminal graph minors series, turns out to be one of the most important tool in structural and algorithmic graph theory. In this paper, we provide the canonical tree dec
In this paper, we present a new, graph-based modeling approach and a polynomial-sized linear programming (LP) formulation of the Boolean satisfiability problem (SAT). The approach is illustrated with a numerical example.
Let $G$ be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of $k$ colors. Suppose that we are given two list edge-colorings $f_0$ and $f_r$ of $G$, and asked whether the
The Double Travelling Salesman Problem with Multiple Stacks, DTSPMS, deals with the collect and delivery of n commodities in two distinct cities, where the pickup and the delivery tours are related by LIFO constraints. During the pickup tour, commodi