ﻻ يوجد ملخص باللغة العربية
In this paper, we give an algebraic construction of the solution to the following mean field equation $$ Delta psi+e^{psi}=4pisum_{i=1}^{2g+2}delta_{P_{i}}, $$ on a genus $ggeq 2$ hyperelliptic curve $(X,ds^{2})$ where $ds^{2}$ is a canonical metric on $X$ and ${P_{1},cdots,P_{2g+2}}$ is the set of Weierstrass points on $X.$ Furthermore, we study the rescaled equation $$ Delta psi+gamma e^{psi}=4pigamma sum_{i=1}^{2g+2}delta_{P_{i}} $$ and its adiabatic limit at $gamma=0$.
Let $X$be a complex hyperelliptic curve of genus two equipped with the canonical metric $ds^2$. We study mean field equations on complex hyperelliptic curves and show that the Gaussian curvature function of $(X,ds^2)$ determines an explicit solution to a mean field equation.
By constructing suitable Borcherds forms on Shimura curves and using Schofers formula for norms of values of Borcherds forms at CM-points, we determine all the equations of hyperelliptic Shimura curves $X_0^D(N)$. As a byproduct, we also address the
Given a hyperelliptic curve $C$ of genus $g$ over a number field $K$ and a Weierstrass model $mathscr{C}$ of $C$ over the ring of integers ${mathcal O}_K$ (i.e. the hyperelliptic involution of $C$ extends to $mathscr{C}$ and the quotient is a smooth
We review recent developments in the method of algebro-geometric integration of integrable systems related to deformations of algebraic curves. In particular, we discuss the theta-functional solutions of Schlesinger system, Ernst equation and self-dual SU(2)-invariant Einstein equations.
Solving nonlinear algebraic equations is a classic mathematics problem, and common in scientific researches and engineering applications. There are many numeric, symbolic and numeric-symbolic methods of solving (real) solutions. Unlucky, these method