ترغب بنشر مسار تعليمي؟ اضغط هنا

Dielectron production in pion-nucleon reactions at intermediate energies

92   0   0.0 ( 0 )
 نشر من قبل Gennady Lykasov I
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Dielectron production in the $pi N$ interaction at not large energies is studied. The dominant contribution of the $Delta$-isobar creation in the intermediate state at incident pion momenta of about 0.3-0.4 GeV$/$c is shown. The experimental distributions over the angle and effective mass $M_{e^+e_-}$ of the $e^+e^-$ pair are described satisfactorily. This stimulated us to present theoretical predictions for the $M_{e^+e_-}$ distribution in the process $pi^- prightarrow ne^+e^-$ at different incident momenta, which could be verified, for example, by the HADES experiments.



قيم البحث

اقرأ أيضاً

Dielectron production in reactions $pi^- p rightarrow n e^+e^-$ and $pi^- p rightarrow n e^+e^- gamma$ at energies less than 1 GeV is studied assuming electron-positron pair production to occur in the virtual time-like photon splitting process. Theor etical predictions of the effective mass distribution of dielectrons and their angular dependence are presented. Extraction of the electromagnetic form factor of baryon transition in the time-like region from future experiments of the HADES Collaboration is discussed.
We study the hadron production in $p+p$, $p+n$ and $n+n$ reactions within the microscopic Parton-Hadron-Dynamics (PHSD) transport approach in comparison to PYTHIA 8.2. We discuss the details of the PHSD tune of the Lund string model (realized by even t generators FRITIOF and PYTHIA) in the vacuum (as in $N+N$ collisions) as well as its in-medium modifications relevant for heavy-ion collisions where a hot and dense matter is produced. We compare the results of PHSD and PYTHIA 8.2 (default version) for the excitation function of hadron multiplicities as well as differential rapidity $y$, transverse momentum $p_T$ and $x_F$ distributions in $p+p$, $p+n$ and $n+n$ reactions with the existing experimental data in the energy range $sqrt{s_{NN}} = 2.7 - 7000$ GeV. We discuss the production mechanisms of hadrons and the role of final state interactions (FSI) due to the hadronic rescattering. We also show the influence of the possible quark-gluon plasma (QGP) formation on hadronic observables in $p+p$ collisions at LHC energies. We stress the importance of developing a reliable event generator for elementary reactions from low to ultra-relativistic energies in view of actual and upcoming heavy-ion experiments.
Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed usi ng two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.
70 - T.C. Rogers , M.M. Sargsian , 2005
We analyze the cross section for vector meson photo-production off a deuteron for the intermediate range of photon energies starting at a few GeVs above the threshold and higher. We reproduce the steps in the derivation of the conventional non-relati vistic Glauber expression based on an effective diagrammatic method while making corrections for Fermi motion and intermediate energy kinematic effects. We show that, for intermediate energy vector meson production, the usual Glauber factorization breaks down and we derive corrections to the usual Glauber method to linear order in longitudinal nucleon momentum. The purpose of our analysis is to establish methods for probing interesting physics in the production mechanism for phi-mesons and heavier vector mesons. We demonstrate how neglecting the breakdown of Glauber factorization can lead to errors in measurements of basic cross sections extracted from nuclear data.
Some of the recent progress in the physics of pion production induced by neutrinos on nucleons and nuclei is reviewed from a theoretical perspective. The importance of Watsons theorem to reconcile ANL and BNL data with the off-diagonal Goldberger-Tre iman relation for the $Delta(1232)$ is discussed. The disagreement between MiniBooNE data and theoretical calculations is presented in the light of the new MINERvA data. The coherent pion production data on $^{12}$C obtained by MINERvA are also compared to different microscopic and PCAC models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا