ﻻ يوجد ملخص باللغة العربية
Formulae of the Lambek calculus are constructed using three binary connectives, multiplication and two divisions. We extend it using a unary connective, positive Kleene iteration. For this new operation, following its natural interpretation, we present two lines of calculi. The first one is a fragment of infinitary action logic and includes an omega-rule for introducing iteration to the antecedent. We also consider a version with infinite (but finitely branching) derivations and prove equivalence of these t
We consider the Lambek calculus, or non-commutative multiplicative intuitionistic linear logic, extended with iteration, or Kleene star, axiomatised by means of an $omega$-rule, and prove that the derivability problem in this calculus is $Pi_1^0$-har
The Lambek calculus is a well-known logical formalism for modelling natural language syntax. The original calculus covered a substantial number of intricate natural language phenomena, but only those restricted to the context-free setting. In order t
We investigate language interpretations of two extensions of the Lambek calculus: with additive conjunction and disjunction and with additive conjunction and the unit constant. For extensions with additive connectives, we show that conjunction and di
We present a translation of the Lambek calculus with brackets and the unit constant, $mathbf{Lb}^{boldsymbol{*}}_{mathbf{1}}$, into the Lambek calculus with brackets allowing empty antecedents, but without the unit constant, $mathbf{Lb}^{boldsymbol{*
We give a proof-theoretic and algorithmic complexity analysis for systems introduced by Morrill to serve as the core of the CatLog categorial grammar parser. We consider two rece