ﻻ يوجد ملخص باللغة العربية
We present a proof of principle for the phenomenon of the tragedy of the commons that is at the center of many theories on the evolution of cooperation. We establish the tragedy in the context of a general chemostat model with two species, the cooperator and the cheater. Both species have the same growth rate function and yield constant, but the cooperator allocates a portion of the nutrient uptake towards the production of a public good -the Commons in the Tragedy- which is needed to digest the externally supplied nutrient. The cheater on the other hand does not produce this enzyme, and allocates all nutrient uptake towards its own growth. We prove that when the cheater is present initially, both the cooperator and the cheater will eventually go extinct, hereby confirming the occurrence of the tragedy. We also show that without the cheater, the cooperator can survive indefinitely, provided that at least a low level of public good or processed nutrient is available initially. Our results provide a predictive framework for the analysis of cooperator-cheater dynamics in a powerful model system of experimental evolution.
A tragedy of the commons (TOC) occurs when individuals acting in their own self-interest deplete commonly-held resources, leading to a worse outcome than had they cooperated. Over time, the depletion of resources can change incentives for subsequent
We revisit the well-known chemostat model, considering that bacteria can be attached together in aggregates or flocs. We distinguish explicitly free and attached compartments in the model and give sufficient conditions for coexistence of these two fo
Started in Wuhan, China, the COVID-19 has been spreading all over the world. We calibrate the logistic growth model, the generalized logistic growth model, the generalized Richards model and the generalized growth model to the reported number of infe
In a previous article [1] we have described the temporal evolution of the Sars- Cov-2 in Italy in the time window February 24-April 1. As we can see in [1] a generalized logistic equation captures both the peaks of the total infected and the deaths.
Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be ex