ﻻ يوجد ملخص باللغة العربية
A generic, non-eccentric binary black hole (BBH) system emits gravitational waves (GWs) that are completely described by 7 intrinsic parameters: the black hole spin vectors and the ratio of their masses. Simulating a BBH coalescence by solving Einsteins equations numerically is computationally expensive, requiring days to months of computing resources for a single set of parameter values. Since theoretical predictions of the GWs are often needed for many different source parameters, a fast and accurate model is essential. We present the first surrogate model for GWs from the coalescence of BBHs including all $7$ dimensions of the intrinsic non-eccentric parameter space. The surrogate model, which we call NRSur7dq2, is built from the results of $744$ numerical relativity simulations. NRSur7dq2 covers spin magnitudes up to $0.8$ and mass ratios up to $2$, includes all $ell leq 4$ modes, begins about $20$ orbits before merger, and can be evaluated in $sim~50,mathrm{ms}$. We find the largest NRSur7dq2 errors to be comparable to the largest errors in the numerical relativity simulations, and more than an order of magnitude smaller than the errors of other waveform models. Our model, and more broadly the methods developed here, will enable studies that would otherwise require millions of numerical relativity waveforms, such as parameter inference and tests of general relativity with GW observations.
Gravitational wave astrophysics relies heavily on the use of matched filtering both to detect signals in noisy data from detectors, and to perform parameter estimation on those signals. Matched filtering relies upon prior knowledge of the signals exp
The recent observation of GW190412, the first high-mass ratio binary black-hole (BBH) merger, by the LIGO-Virgo Collaboration (LVC) provides a unique opportunity to probe the impact of subdominant harmonics and precession effects encoded in a gravita
Numerical relativity (NR) simulations provide the most accurate binary black hole gravitational waveforms, but are prohibitively expensive for applications such as parameter estimation. Surrogate models of NR waveforms have been shown to be both fast
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different
Only numerical relativity simulations can capture the full complexities of binary black hole mergers. These simulations, however, are prohibitively expensive for direct data analysis applications such as parameter estimation. We present two new fast