ﻻ يوجد ملخص باللغة العربية
Under Newtonian gravity total masses for dSph galaxies will scale as $M_{T} propto R_{e} sigma^{2}$, with $R_{e}$ the effective radius and $sigma$ their velocity dispersion. When both of the above quantities are available, the resulting masses are compared to observed stellar luminosities to derive Newtonian mass to light ratios, given a physically motivated proportionality constant in the above expression. For local dSphs and the growing sample of ultrafaint such systems, the above results in the largest mass to light ratios of any galactic systems known, with values in the hundreds and even thousands being common. The standard interpretation is for a dominant presence of an as yet undetected dark matter component. If however, reality is closer to a MONDian theory at the extremely low accelerations relevant to such systems, $sigma$ will scale with { stellar mass} $M_{*}^{1/4}$. This yields an expression for the mass to light ratio which will be obtained under Newtonian assumptions of $(M/L)_{N}=120 R_{e}(Upsilon_{*}/L)^{1/2}$. Here we compare $(M/L)_{N}$ values from this expression to Newtonian inferences for this ratios for the actual $(R_{e}, sigma, L)$ observed values for a sample of recently observed ultrafaint dSphs, obtaining good agreement. Then, for systems where no $sigma$ values have been reported, we give predictions for the $(M/L)_{N}$ values which under a MONDian scheme are expected once kinematical observations become available. For the recently studied Dragonfly 44 { and Crater II systems}, reported $(M/L)_{N}$ values are also in good agreement with MONDian expectations.
Dwarf spheroidal (dSph) galaxies are prime targets for present and future gamma-ray telescopes hunting for indirect signals of particle dark matter. The interpretation of the data requires careful assessment of their dark matter content in order to d
Using data from the WISE mission, we have measured near infra-red (NIR) photometry of a diverse sample of dust-free stellar systems (globular clusters, dwarf and giant early-type galaxies) which have metallicities that span the range -2.2 < [Fe/H] (d
We study the statistical mechanics of binary systems under gravitational interaction of the Modified Newtonian Dynamics (MOND) in three-dimensional space. Considering the binary systems, in the microcanonical and canonical ensembles, we show that in
We show that the discrepancy between the Tully-Fisher relation and the luminosity function predicted by most phenomenological galaxy formation models is mainly due to overmerging of galaxy haloes. We have circumvented this overmerging problem, which
The stellar mass-to-light ratio gradient in SDSS $r-$band $ abla (M_*/L_r)$ of a galaxy depends on its mass assembly history, which is imprinted in its morphology and gradients of age, metallicity, and stellar initial mass function (IMF). Taking a Ma