ترغب بنشر مسار تعليمي؟ اضغط هنا

Can the Helium-Enriched Main-Sequence Donor Scenario Hide Enough Hydrogen to Explain Type Ia Supernovae?

318   0   0.0 ( 0 )
 نشر من قبل Zhengwei Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Zheng-Wei Liu




اسأل ChatGPT حول البحث

Hydrodynamical simulations predict that a large amount of hydrogen (>0.1 solar masses) is removed from a hydrogen-rich companion star by the SN explosion in the single-degenerate scenario of Type Ia supernovae (SNe Ia). However, non-detection of hydrogen-rich material in the late-time spectra of SNe Ia suggests that the hydrogen mass stripped from the progenitor system is <0.001-0.058 solar masses. In this letter we include thermohaline mixing into self-consistent binary evolution calculations for the helium-enriched main-sequence (HEMS) donor channel of SNe Ia for the first time. We find that the swept-up hydrogen masses expected in this channel are around 0.10-0.17 solar masses, which is higher than the observational limits, although the companion star is strongly helium-enriched when the SN explodes. This presents a serious challenge to the HEMS donor channel.



قيم البحث

اقرأ أيضاً

The nature of the progenitors of Type Ia supernovae (SNe Ia) remains a mystery. Comparing theoretical rates and delay-time distributions of SNe Ia with those inferred observationally can constrain their progenitor models. In this work, taking thermoh aline mixing into account in the helium-enriched main-sequence (HEMS) donor scenario, we address rates and delay times of SNe Ia in this channel by combining the results of self-consistent binary evolution calculations with population synthesis models. We find that the Galactic SN Ia rate from the HEMS donor scenario is around 0.6-1.2 per century, which is about 30% of the observed rate. Delay times of SNe Ia in this scenario cover a wide range of 0.1-1.0 Gyr. We also present the pre-explosion properties of companion stars in the HEMS donor scenario, which will be helpful for placing constraints on SN Ia progenitors through analyzing their pre-explosion images.
We study a sample of 16 Type Ia supernovae (SNe Ia) having both spectroscopic and photometric observations within 2 $-$ 3 days after the first light. The early $B-V$ colors of such a sample tends to show a continuous distribution. For objects with no rmal ejecta velocity (NV), the C~II $lambda$6580 feature is always visible in the early spectra while it is absent or very weak in the high-velocity (HV) counterpart. Moreover, the velocities of the detached high-velocity features (HVFs) of Ca~II NIR triplet (CaIR3) above the photosphere are found to be much higher in HV objects than in NV objects, with typical values exceeding 30,000 km~s$^{-1}$ at 2 $-$ 3 days. We further analyze the relation between %velocities of Si~II~$lambda$6355 at maximum, $v_{rm Si,max}$, the velocity shift of late-time [Fe~II] lines ($v_{rm [Fe~II]}$) and host galaxy mass. We find that all HV objects have redshifted $v_{rm [Fe~II]}$ while NV objects have both blue- and redshifted $v_{rm [Fe~II]}$. It is interesting to point out that the objects with redshifted $v_{rm [Fe~II]}$ are all located in massive galaxies, implying that HV and a portion of NV objects may have similar progenitor metallicities and explosion mechanisms. We propose that, with a geometric/projected effect, the He-detonation model may account for the similarity in birthplace environment and the differences seen in some SNe Ia, including $B-V$ colors, C~II feature, CaIR3 HVFs at early time and $v_{rm [Fe~II]}$ in the nebular phase. Nevertheless, some features predicted by He-detonation simulation, such as the rapidly decreasing light curve, deviate from the observations, and some NV objects with blueshifted nebular $v_{rm [Fe~II]}$ may involve other explosion mechanisms.
The origin of the progenitors of type Ia supernovae (SNe Ia) is still uncertain. The core-degenerate (CD) scenario has been proposed as an alternative way for the production of SNe Ia. In this scenario, SNe Ia are formed at the final stage of common- envelope evolution from a merger of a carbon-oxygen white dwarf (CO WD) with the CO core of an asymptotic giant branch companion. However, the birthrates of SNe Ia from this scenario are still not well determined. In this work, we performed a detailed investigation on the CD scenario based on a binary population synthesis approach. The SN Ia delay times from this scenario are basically in the range of 90Myr-2500Myr, mainly contributing to the observed SNe Ia with short and intermediate delay times although this scenario can also produce some old SNe Ia. Meanwhile, our work indicates that the Galactic birthrates of SNe Ia from this scenario are no more than 20% of total SNe Ia due to more careful treatment of mass transfer. Although the SN Ia birthrates in the present work are lower than those in Ilkov & Soker, the CD scenario cannot be ruled out as a viable mechanism for the formation of SNe Ia. Especially, SNe Ia with circumstellar material from this scenario contribute to 0.7-10% of total SNe Ia, which means that the CD scenario can reproduce the observed birthrates of SNe Ia like PTF 11kx. We also found that SNe Ia happen systemically earlier for a high value of metallicity and their birthrates increase with metallicity.
We present predictions for hydrogen and helium emission line luminosities from circumstellar matter around Type Ia supernovae (SNe Ia) using time dependent photoionization modeling. ESO/VLT optical echelle spectra of the SN Ia 2000cx were taken befor e and up to 70 days after maximum. We detect no hydrogen and helium lines, and place an upper limit on the mass loss rate for the putative wind of less than 1.3EE{-5} solar masses per year, assuming a speed of 10 km/s and solar abundances for the wind. In a helium-enriched case, the best line to constrain the mass loss would be He I 10,830 A. We confirm the details of interstellar Na I and Ca II absorption towards SN 2000cx as discussed by Patat et al., but also find evidence for 6613.56 A Diffuse Interstellar Band (DIB) absorption in the Milky Way. We discuss measurements of the X-ray emission from the interaction between the supernova ejecta and the wind and we re-evaluate observations of SN 1992A obtained 16 days after maximum by Schlegel & Petre. We find an upper limit of 1.3EE{-5} solar masses per year. These results, together with the previous observational work on the normal SNe Ia 1994D and 2001el, disfavour a symbiotic star in the upper mass loss rate regime from being the likely progenitor scenario for these SNe. To constrain hydrogen in late time spectra, we present ESO/VLT and ESO/NTT optical and infrared observations of SNe Ia 1998bu and 2000cx 251-388 days after maximum. We see no hydrogen line emission in SNe 1998bu and 2000cx at these epochs, and we argue from modeling that the mass of such hydrogen-rich gas must be less than 0.03 solar masses for both supernovae. Comparing similar upper limits with recent models of Pan et al., it seems hydrogen-rich donors with a separation of less than 5 times the radius of the donor may be ruled out for the five SNe Ia 1998bu, 2000cx, 2001el, 2005am and 2005cf.
241 - P. Boehner , T. Plewa , N. Langer 2016
We study supernova ejecta-companion interactions in a sample of realistic semidetached binary systems representative of Type Ia supernova progenitor binaries in a single-degenerate scenario. We model the interaction process with the help of a high-re solution hydrodynamic code assuming cylindrical symmetry. We find that the ejecta hole has a half-opening angle of 40--50$^circ$ with the density by a factor of 2-4 lower, in good agreement with the previous studies. Quantitative differences from the past results in the amounts and kinematics of the stripped companion material and levels of contamination of the companion with the ejecta material can be explained by different model assumptions and effects due to numerical diffusion.We analyse and, for the first time, provide simulation-based estimates of the amounts and of the thermal characteristics of the shock-heated material responsible for producing a prompt, soft X-ray emission. Besides the shocked ejecta material, considered in the original model by Kasen, we also account for the stripped, shock-heated envelope material of stellar companions, which we predict partially contributes to the prompt emission. The amount of the energy deposited in the envelope is comparable to the energy stored in the ejecta. The total energy budget available for the prompt emission is by a factor of about 2-4 smaller than originally predicted by Kasen. Although the shocked envelope has a higher characteristic temperature than the shocked ejecta, the temperature estimates of the shocked material are in good agreement with the Kasens model. The hottest shocked plasma is produced in the subgiant companion case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا