ﻻ يوجد ملخص باللغة العربية
Finding the solutions of the equations that describe the dynamics of a given physical system is crucial in order to obtain important information about its evolution. However, by using estimation theory, it is possible to obtain, under certain limitations, some information on its dynamics. The quantum-speed-limit (QSL) theory was originally used to estimate the shortest time in which a Hamiltonian drives an initial state to a final one for a given fidelity. Using the QSL theory in a slightly different way, we are able to estimate the running time of a given quantum process. For that purpose, we impose the saturation of the Anandan-Aharonov bound in a rotating frame of reference where the state of the system travels slower than in the original frame (laboratory frame). Through this procedure it is possible to estimate the actual evolution time in the laboratory frame of reference with good accuracy when compared to previous methods. Our method is tested successfully to predict the time spent in the evolution of nuclear spins 1/2 and 3/2 in NMR systems. We find that the estimated time according to our method is better than previous approaches by up to four orders of magnitude. One disadvantage of our method is that we need to solve a number of transcendental equations, which increases with the system dimension and parameter discretization used to solve such equations numerically.
Quantum speed limit time defines the limit on the minimum time required for a quantum system to evolve between two states. Investigation of bounds on speed limit time of quantum system under non-unitary evolution is of fundamental interest, as it rev
Quantum mechanics establishes a fundamental bound for the minimum evolution time between two states of a given system. Known as the quantum speed limit (QSL), it is a useful tool in the context of quantum control, where the speed of some control prot
Quantum theory sets a bound on the minimal time evolution between initial and target states. This bound is called as quantum speed limit time. It is used to quantify maximal speed of quantum evolution. The quantum evolution will be faster, if quantum
Memory effects play a fundamental role in the dynamics of open quantum systems. There exist two different views on memory for quantum noises. In the first view, the quantum channel has memory when there exist correlations between successive uses of t
We investigate the roles of the relativistic effect on the speed of evolution of a quantum system coupled with amplitude damping channels. We find that the relativistic effect speed-up the quantum evolution to a uniform evolution speed of open quantu