ترغب بنشر مسار تعليمي؟ اضغط هنا

Slingshot Mechanism for Clusters: Gas Density Regulates Star Density in the Orion Nebula Cluster (M42)

46   0   0.0 ( 0 )
 نشر من قبل Ameila Stutz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Amelia M. Stutz




اسأل ChatGPT حول البحث

We characterize the stellar and gas volume density, potential, and gravitational field profiles in the central $sim$ 0.5 pc of the Orion Nebula Cluster (ONC), the nearest embedded star cluster (or rather, proto-cluster) hosting massive star formation available for detailed observational scrutiny. We find that the stellar volume density is well characterized by a Plummer profile $rho_{stars}(r) = 5755,{rm M}_{odot},{rm pc}^{-3},(1+(r/a)^2)^{-5/2}$, where $a = 0.36$ pc. The gas density follows a cylindrical power law $rho_{gas}(R) = 25.9,{rm M}_{odot},{rm pc}^{-3},(R/{rm pc})^{-1.775}$. The stellar density profile dominates over the gas density profile inside $r,sim,1$ pc. The gravitational field is gas-dominated at all radii, but the contribution to the total field by the stars is nearly equal to that of the gas at $r,sim,a$. This fact alone demonstrates that the proto-cluster cannot be considered a gas-free system or a virialized system dominated by its own gravity. The stellar proto-cluster core is dynamically young, with an age of $sim$ 2-3 Myr, a 1D velocity dispersion of $sigma_{rm obs} = 2.6$ km s$^{-1}$, and a crossing time of $sim$ 0.55 Myr. This timescale is almost identical to the gas filament oscillation timescale estimated recently by Stutz & Gould (2016). This provides strong evidence that the proto-cluster structure is regulated by the gas filament. The proto-cluster structure may be set by tidal forces due to the oscillating filamentary gas potential. Such forces could naturally suppress low density stellar structures on scales $gtrsim,a$. The analysis presented here leads to a new suggestion that clusters form by an analog of the slingshot mechanism previously proposed for stars.



قيم البحث

اقرأ أيضاً

142 - Nicola Da Rio 2014
The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues on the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing t he latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC, and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, consistent with a higher degree of dynamical processing. At larger distances the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the ISM density, estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor $sim 1.8$ to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that, at the half-mass radius, 90% of the stellar population formed within $sim 5$-$8$ free-fall times ($t_{rm ff}$). This implies a star formation efficiency per $t_{rm ff}$ of $epsilon_{rm ff}sim 0.04$-$0.07$, i.e., relatively slow and inefficient star formation rates during star cluster formation.
By comparing 3 constituents of Orion A (gas, protostars, and pre-main-sequence stars), both morhologically and kinematically, we derive the following. The gas surface density near the integral-shaped filament (ISF) is well represented by a power law, Sigma(b)=72 Msun/pc^2(b/pc)^{-5/8} for our entire range, 0.05<b/pc<8.5, of distance from the filament ridge. Essentially all protostars lie on the ISF or other filament ridges, while almost all pre-main-sequence stars do not. Combined with the fact that protostars move <1 kms relative to the filaments while stars move several times faster, this implies that protostellar accretion is terminated by a slingshot ejection from the filaments. The ISF is the 3rd in a series of star bursts that are progressively moving south, with separations of a few Myr in time and 3 pc in space. This, combined with the filaments observed undulations (spatial and velocity), suggests that repeated propagation of transverse waves thru the filament is progressively digesting the material that formerly connected Orion A and B into stars in discrete episodes. We construct an axially symmetric gas density profile rho(r)=16 Msun/pc^3(r/pc)^{-13/8}. The model implies that the observed magnetic fields are supercritical on scales of the observed undulations, suggesting that the filaments transverse waves are magnetically induced. Because the magnetic fields are subcritical on scales of the filament on larger scales, the system as a whole is relatively stable and long lived. Protostellar ejection occurs because the gas accelerates away from the protostars, not the other way around. The model also implies that the ISF is kinematically young, which is consistent with other lines of evidence. The southern filament has a broken power law, which matches the ISF profile for 2.5<b/pc<8.5, but is shallower closer in. It is also kinematically older than the ISF.
In order to study the nature, origin, and impact of turbulent velocity fluctuations in the ionized gas of the Orion Nebula, we apply a variety of statistical techniques to observed velocity cubes. The cubes are derived from high resolving power ($R a pprox 40,000$) longslit spectroscopy of optical emission lines that span a range of ionizations. From Velocity Channel Analysis (VCA), we find that the slope of the velocity power spectrum is consistent with predictions of Kolmogorov theory between scales of 8 and 22 arcsec (0.02 to 0.05 pc). The outer scale, which is the dominant scale of density fluctuations in the nebula, approximately coincides with the autocorrelation length of the velocity fluctuations that we determine from the second order velocity structure function. We propose that this is the principal driving scale of the turbulence, which originates in the autocorrelation length of dense cores in the Orion molecular filament. By combining analysis of the non-thermal line widths with the systematic trends of velocity centroid versus ionization, we find that the global champagne flow and smaller scale turbulence each contribute in equal measure to the total velocity dispersion, with respective root-mean-square widths of 4-5 km/s. The turbulence is subsonic and can account for only one half of the derived variance in ionized density, with the remaining variance provided by density gradients in photoevaporation flows from globules and filaments. Intercomparison with results from simulations implies that the ionized gas is confined to a thick shell and does not fill the interior of the nebula.
We analyze the relationship between maximum cluster mass, M_max, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H2) and star formation rate (Sigma_SFR) in the flocculent galaxy M33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M_max is proportional to Sigma_gas^4.7, M_max is proportional Sigma_H2^1.3, and M_max is proportional to Sigma_SFR^1.0. We rule out that these correlations result from the size of sample; hence, the change of the maximum cluster mass must be due to physical causes.
We used resolved star counts from Hubble Space Telescope images to determine the center of gravity and the projected density profiles of 6 old globular clusters in the Large Magellanic Cloud (LMC), namely NGC 1466, NGC 1841, NGC 1898, NGC 2210, NGC 2 257 and Hodge 11. For each system, the LMC field contribution was properly taken into account by making use, when needed, of parallel HST observations. The derived values of the center of gravity may differ by several arcseconds (corresponding to more than 1 pc at the distance of the LMC) from previous determinations. The cluster density profiles are all well fit by King models, with structural parameters that may differ from the literature ones by even factors of two. Similarly to what observed for Galactic globular clusters, the ratio between the effective and the core radii has been found to anti-correlate with the cluster dynamical age.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا