ﻻ يوجد ملخص باللغة العربية
We examine the problem of exactly or approximately counting all perfect matchings in hereditary classes of nonbipartite graphs. In particular, we consider the switch Markov chain of Diaconis, Graham and Holmes. We determine the largest hereditary class for which the chain is ergodic, and define a large new hereditary class of graphs for which it is rapidly mixing. We go on to show that the chain has exponential mixing time for a slightly larger class. We also examine the question of ergodicity of the switch chain in a arbitrary graph. Finally, we give exact counting algorithms for three classes.
We study a simple Markov chain, the switch chain, on the set of all perfect matchings in a bipartite graph. This Markov chain was proposed by Diaconis, Graham and Holmes as a possible approach to a sampling problem arising in Statistics. We ask: for
In a recent paper, Beniamini and Nisan gave a closed-form formula for the unique multilinear polynomial for the Boolean function determining whether a given bipartite graph $G subseteq K_{n,n}$ has a perfect matching, together with an efficient algor
The min-cost matching problem suffers from being very sensitive to small changes of the input. Even in a simple setting, e.g., when the costs come from the metric on the line, adding two nodes to the input might change the optimal solution completely
A matching $M$ in a graph $G$ is said to be uniquely restricted if there is no other matching in $G$ that matches the same set of vertices as $M$. We describe a polynomial-time algorithm to compute a maximum cardinality uniquely restricted matching i
We show fully polynomial time randomized approximation schemes (FPRAS) for counting matchings of a given size, or more generally sampling/counting monomer-dimer systems in planar, not-necessarily-bipartite, graphs. While perfect matchings on planar g