ﻻ يوجد ملخص باللغة العربية
An ultra-high magnetic field was generated by the electro-magnetic flux compression technique under a reduced seed magnetic field condition and achieved maximum magnetic field intensity was investigated. An ordinal pickup coil measurement fails due to the dielectric breakdown at around 500 T. On the other hand, by utilizing the magneto-optical Faraday rotation method with a small probe, the measureable maximum magnetic field increased significantly. It was found that reduced seed field increases the maximum magnetic field, but with a reduced size of the final bore. A highest magnetic field over 763 T and possibly up to 985 T approaching 1000 T was detected.
The spatial distribution of magnetic fields that are generated by the electromagnetic flux compression technique is investigated, with emphasis on the dynamical processes of an imploding liner. By comparing with the results of computer simulations, w
The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free
The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free
We present the design of a highly compact High Field Scanning Probe Microscope (HF-SPM) for operation at cryogenic temperatures in an extremely high magnetic field, provided by a water-cooled Bitter magnet able to reach 38 T. The HF-SPM is 14 mm in d
The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free