ﻻ يوجد ملخص باللغة العربية
The performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry $H_{entry}$ and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation ($mu$SR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing at 1400{deg}C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure $H_{entry}$ of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.
In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small gra
Measurements of the in-plane magnetic field penetration depth lambda_{ab} in Fe-based superconductors with the nominal composition SmFeAsO_0.85 (T_csimeq52K) and NdFeAsO_0.85 (T_csimeq51K) were carried out by means of muon-spin-rotation. The absolute
We study magnetic flux interacting with arrays of pinning sites (APS) placed on vertices of hyperbolic tesselations (HT). We show that, due to the gradient in the density of pinning sites, HT APS are capable of trapping vortices for a broad range of
Magnetic hysteresis loops (MHLs) have been comparatively measured on both textured and single crystalline Sc5Ir4Si10 superconductors. Critical current densities and flux pinning forces are calculated from MHLs by Bean model. Three kinds of peaks of t
A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produces a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the den