ﻻ يوجد ملخص باللغة العربية
We investigate statistical properties of trails formed by a random process incorporating aggregation, fragmentation, and diffusion. In this stochastic process, which takes place in one spatial dimension, two neighboring trails may combine to form a larger one and also, one trail may split into two. In addition, trails move diffusively. The model is defined by two parameters which quantify the fragmentation rate and the fragment size. In the long-time limit, the system reaches a steady state, and our focus is the limiting distribution of trail weights. We find that the density of trail weight has power-law tail $P(w) sim w^{-gamma}$ for small weight $w$. We obtain the exponent $gamma$ analytically, and find that it varies continuously with the two model parameters. The exponent $gamma$ can be positive or negative, so that in one range of parameters small-weight tails are abundant, and in the complementary range, they are rare.
We performed extensive numerical simulation of diffusion-limited aggregation in two dimensional channel geometry. Contrary to earlier claims, the measured fractal dimension D = 1.712 +- 0.002 and its leading correction to scaling are the same as in t
We discuss the scaling of characteristic lengths in diffusion limited aggregation (DLA) clusters in light of recent developments using conformal maps. We are led to the conjecture that the apparently anomalous scaling of lengths is due to one slow cr
Diffusion-limited aggregation is consistent with simple scaling. However, strong subdominant terms are present, and these can account for various earlier claims of anomalous scaling. We show this in detail for the case of multiscaling.
We investigate diffusion-limited aggregation (DLA) in a wedge geometry. Arneodo and collaborators have suggested that the ensemble average of DLA cluster density should be close to the noise-free selected Saffman-Taylor finger. We show that a differe
The self-diffusion constant D is expressed in terms of transitions among the local minima of the potential (inherent structure, IS) and their correlations. The formulae are evaluated and tested against simulation in the supercooled, unit-density Lenn