ﻻ يوجد ملخص باللغة العربية
A set $mathcal{A}$ is said to be an additive $h$-basis if each element in ${0,1,ldots,hn}$ can be written as an $h$-sum of elements of $mathcal{A}$ in {it at least} one way. We seek multiple representations as $h$-sums, and, in this paper we make a start by restricting ourselves to $h=2$. We say that $mathcal{A}$ is said to be a truncated $(alpha,2,g)$ additive basis if each $jin[alpha n, (2-alpha)n]$ can be represented as a $2$-sum of elements of $mathcal{A}$ in at least $g$ ways. In this paper, we provide sharp asymptotics for the event that a randomly selected set is a truncated $(alpha,2,g)$ additive basis with high or low probability.
We give an expression of polynomials for higher sums of powers of integers via the higher order Bernoulli numbers.
Can any element in a sufficiently large finite field be represented as a sum of two $d$th powers in the field? In this article, we recount some of the history of this problem, touching on cyclotomy, Fermats last theorem, and diagonal equations. Then,
Let O be the ring of integers of a number field K. For an O-algebra R which is torsion free as an O-module we define what we mean by a Lambda_O-ring structure on R. We can determine whether a finite etale K-algebra E with Lambda_O-ring structure has
A $k$-sum of a set $Asubseteq mathbb{Z}$ is an integer that may be expressed as a sum of $k$ distinct elements of $A$. How large can the ratio of the number of $(k+1)$-sums to the number of $k$-sums be? Writing $kwedge A$ for the set of $k$-sums of $
We define a new kind of classical digamma function, and establish its some fundamental identities. Then we apply the formulas obtained, and extend tools developed by Flajolet and Salvy to study more general Euler type sums. The main results of Flajol