ترغب بنشر مسار تعليمي؟ اضغط هنا

White Paper on Nuclear Data Needs and Capabilities for Basic Science

202   0   0.0 ( 0 )
 نشر من قبل Michael Thoennessen
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Workshop on Nuclear Data Needs and Capabilities for Basic Science was held at the University of Notre Dame on 10-11 August 2016. The purpose of this targeted workshop was to assemble and prioritize the needs of the nuclear physics research community for data sets, services and capabilities in areas including nuclear structure, nuclear reactions, nuclear astrophysics, fundamental interactions, neutrino physics and nuclear theory. An overview of nuclear data needs and capabilities identified at this meeting are summarized in the present document.



قيم البحث

اقرأ أيضاً

This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcom e of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9- 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.
240 - E. Dupont , M. Bossant , R. Capote 2020
The OECD-NEA High Priority Request List (HPRL) is a point of reference to guide and stimulate the improvement of nuclear data for nuclear energy and other applications, and a tool to bridge the gap between data users and producers. The HPRL is applic ation-driven and the requests are submitted by nuclear data users or representatives of the users communities. A panel of international experts reviews and monitors the requests in the framework of an Expert Group mandated by the NEA Nuclear Science Committee Working Party on International Nuclear Data Evaluation Cooperation (WPEC). After approval, individual requests are classified to three categories: high priority requests, general requests, and special purpose requests (e.g., dosimetry, standards). The HPRL is hosted by the NEA in the form of a relational database publicly available on the web. This paper provides an overview of HPRL entries, status and outlook. Examples of requests successfully completed are given and new requests are described with emphasis on updated nuclear data needs in the fields of nuclear energy, neutron standards and dosimetry.
55 - A. Algora , J. L. Tain , B. Rubio 2020
In this review we will present the results of recent beta-decay studies using the total absorption technique that cover topics of interest for applications, nuclear structure and astrophysics. The decays studied were selected primarily because they h ave a large impact on the prediction of a) the decay heat in reactors, important for the safety of present and future reactors and b) the reactor electron antineutrino spectrum, of interest for particle/nuclear physics and reactor monitoring. For these studies the total absorption technique was chosen, since it is the only method that allows one to obtain beta decay probabilities free from a systematic error called the Pandemonium effect. The measurements presented and discussed here were performed mainly at the IGISOL facility of the University of Jyvaskyla (Finland) using isotopically pure beams provided by the JYFLTRAP Penning trap. Examples are presented to show that the results of our measurements on selected nuclei have had a large impact on predictions of both the decay heat and the anti-neutrino spectrum from reactors. Some of the cases involve beta delayed neutron emission thus one can study the competition between gamma- and neutron-emission from states above the neutron separation energy. The gamma-to-neutron emission ratios can be used to constrain neutron capture (n,gamma)cross sections for unstable nuclei of interest in astrophysics. The information obtained from the measurements can also be used to test nuclear model predictions of half-lives and Pn values for decays of interest in astrophysical network calculations. These comparisons also provide insights into aspects of nuclear structure in particular regions of the nuclear chart.
94 - J.P. Chen , H. Gao , T.K. Hemmick 2014
In order to fully exploit the physics potential of Jefferson Lab after 12 GeV energy upgrade, a new Solenoidal Large Acceptance Device (SoLID) is proposed. The SoLID spectrometer, with its unique capability of large acceptance and high luminosity, is ideal for precision measurements in semi-inclusive DIS to study transverse spin and transverse-momentum-dependent parton distributions of the nucleon, and for parity-violating Deep Inelastic Scattering (DIS) to perform precision tests of the Standard Model at low energy as well as addressing specific issues in nucleon structure including charge symmetry violation, d/u ratio and higher-twist effects due to di-quark. SoLID is also essential for precision measurements of J/psi electroproduction in the threshold region to study non-perturbative gluon dynamics and interaction. Five highly rated SoLID experiments and two run group experiments have been approved by the JLab Physics Advisory Committee. The physics program is presented along with an overview of the SoLID instrumentation and its current status.
In support of the Astrobiology Science Strategy, this whitepaper outlines some key technology challenges pertaining to the remote search for life in exoplanetary systems. Finding evidence for life on rocky planets outside of our solar system requires new technical capabilities for the key measurements of spectral signatures of biosignature gases, and of planetary mass measurement. Spectra of Earth-like planets can be directly measured in reflected stellar light in the visible band or near-infrared using a factor 1e-10 starlight suppression with occulters, either internal (coronagraph) or external (starshade). Absorption and emission (reflected and thermal) spectra can be obtained in the mid-infrared of rocky planets transiting M-dwarfs via spectroscopy of the transit and secondary eclipse, respectively. Mass can be measured from the stars reflex motion, the reflex motion of a star, via either precision radial velocity methods or astrometry. Several technology gaps must be closed to provide astronomers the necessary capabilities to obtain these key measurements for small planets orbiting within the predicted temperate zones around nearby stars. These involved performance improvements, in some cases, 1-2 orders of magnitude from state-of-the-art or involve performances never demonstrated. The technologies advancing to close these gaps have been identified through the NASA Exoplanet Exploration Programs annual Technology Selection and Prioritization Process in collaboration with the larger exoplanet science and technology community
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا