ترغب بنشر مسار تعليمي؟ اضغط هنا

Survival of the obscuring torus in the most powerful active galactic nuclei

58   0   0.0 ( 0 )
 نشر من قبل Silvia Mateos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dedicated searches generally find a decreasing fraction of obscured Active Galactic Nuclei (AGN) with increasing AGN luminosity. This has often been interpreted as evidence for a decrease of the covering factor of the AGN torus with increasing luminosity, the so-called receding torus models. Using a complete flux-limited X-ray selected sample of 199 AGN, from the Bright Ultra-hard XMM-Newton Survey, we determine the intrinsic fraction of optical type-2 AGN at 0.05$leq$z$leq$1 as a function of rest-frame 2-10 keV X-ray luminosity from 10$^{42}$ to 10$^{45}$ erg/s. We use the distributions of covering factors of AGN tori derived from CLUMPY torus models. Since these distributions combined over the total AGN population need to match the intrinsic type-2 AGN fraction, we reveal a population of X-ray undetected objects with high-covering factor tori, which are increasingly numerous at higher AGN luminosities. When these missing objects are included, we find that Compton-thick AGN account at most for 37$_{-10}^{+9}$% of the total population. The intrinsic type-2 AGN fraction is 58$pm$4% and has a weak, non-significant (less than 2$sigma$) luminosity dependence. This contradicts the results generally reported by AGN surveys, and the expectations from receding torus models. Our findings imply that the majority of luminous rapidly-accreting supermassive black holes at z<1 reside in highly-obscured nuclear environments but most of them are so deeply embedded that they have so far escaped detection in X-rays in <10 keV wide-area surveys.



قيم البحث

اقرأ أيضاً

139 - E. K. S. Hicks 2009
In a sample of local active galactic nuclei studied at a spatial resolution on the order of 10 pc we show that the interstellar medium traced by the molecular hydrogen v=1-0 S(1) 2.1um line forms a geometrically thick, clumpy disk. The kinematics of the molecular gas reveals general rotation, although an additional significant component of random bulk motion is required by the high local velocity dispersion. The size scale of the typical gas disk is found to have a radius of ~30 pc with a comparable vertical height. Within this radius the average gas mass is estimated to be ~10^7 Msun based on a typical gas mass fraction of 10%, which suggests column densities of Nh ~ 5x10^23 cm^-2. Extinction of the stellar continuum within this same region suggest lower column densities of Nh ~ 2x10^22 cm^-2, indicating that the gas distribution on these scales is dominated by dense clumps. In half of the observed Seyfert galaxies this lower column density is still great enough to obscure the AGN at optical/infrared wavelengths. We conclude, based on the spatial distribution, kinematics, and column densities that the molecular gas observed is spatially mixed with the nuclear stellar population and is likely to be associated with the outer extent of any smaller scale nuclear obscuring structure. Furthermore, we find that the velocity dispersion of the molecular gas is correlated with the star formation rate per unit area, suggesting a link between the two phenomena, and that the gas surface density follows known Schmidt-Kennicutt relations. The molecular/dusty structure on these scales may be dynamic since it is possible that the velocity dispersion of the gas, and hence the vertical disk height, is maintained by a short, massive inflow of material into the nuclear region and/or by intense, short-lived nuclear star formation.
Jets associated with Active Galactic Nuclei (AGN) have been observed for almost a century, initially at optical and radio wavelengths. They are now widely accepted as exhausts produced electromagnetically by the central, spinning, massive black hole and its orbiting, accreting gas. Observations at X-ray and, especially, gamma-ray energies have transformed our understanding of how these jets evolve dynamically, accelerate electrons (and positrons) and radiate throughout the entire electromagnetic spectrum. Some new approaches to modeling the powerful and rapidly variable TeV emission observed from many blazars are sketched. Observations at the highest TeV energies, to which the High Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) will contribute, promise crucial discrimination between rival models of AGN jets.
We analyzed the spectral shape of the Compton shoulder around the neutral Fe-K$_alpha$ line of the Compton-thick type II Seyfert nucleus of the Circinus galaxy. The characteristics of this Compton shoulder with respect to the reflected continuum and Fe-K$_alpha$ line core intensity are a powerful diagnostics tool for analyzing the structure of the molecular tori, which obscure the central engine. We applied our Monte-Carlo-based X-ray reflection spectral model to the Chandra High Energy Transmission Grating data and successfully constrained the various spectral parameters independently, using only the spectral data only around the Fe-K$_alpha$ emission line. The obtained column density and inclination angle are consistent with the previous observations and the Compton-thick type II Seyfert picture. In addition, we determined the metal abundance of the molecular torus for the case of the smooth and clumpy torus to be 1.75$^{+0.19}_{-0.17}$ and 1.74$pm$0.16 solar abundance, respectively. Such slightly over-solar abundance can be useful information for discussing the star formation rate in the molecular tori of active galactic nuclei.
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v~0.1-0.3c), highly-ionized (mainly visible in FeXXV and FeXXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.
83 - Hajime Inoue 2021
We study accretion environments of active galactic nuclei when a super-massive black hole wanders in a circum-nuclear region and passes through an interstellar medium there. It is expected that a Bondi-Hoyle-Lyttleton type accretion of the interstell ar matter takes place and an accretion stream of matter trapped by the black hole gravitational field appears from a tail shock region. Since the trapped matter is likely to have a certain amount of specific angular momentum, the accretion stream eventually forms an accretion ring around the black hole. According to the recent study, the accretion ring consists of a thick envelope and a thin core, and angular momenta are transfered from the inner side facing to the black hole to the opposite side respectively in the envelope and the core. As a result, a thick accretion flow and a thick excretion flow extend from the envelope, and a thin accretion disk and a thin excretion disk do from the core. The thin excretion disk is predicted to terminate at some distance forming an excretion ring, while the thick excretion flow is considered to become a super-sonic wind flowing to the infinity. The thick excretion flow from the accretion ring is expected to interact with the accretion stream toward the accretion ring and to be collimated to bi-polar cones. These pictures provide a likely guide line to interpret the overall accretion environments suggested from observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا