ﻻ يوجد ملخص باللغة العربية
We investigate a two-player zero-sum stochastic differential game problem with the state process being constrained in a connected bounded closed domain, and the cost functional described by the solution of a generalized backward stochastic differential equation (GBSDE for short). We show that the value functions enjoy a (strong) dynamic programming principle, and are the unique viscosity solution of the associated Hamilton-Jacobi-Bellman-Isaacs equations with nonlinear Neumann boundary problems. To obtain the existence for viscosity solutions, we provide a new approach utilizing the representation theorem for generators of the GBSDE, which is proved by a random time change method and is a novel result in its own right.
We investigate a two-player zero-sum differential game with asymmetric information on the payoff and without Isaacs condition. The dynamics is an ordinary differential equation parametrised by two controls chosen by the players. Each player has a pri
In this Note, assuming that the generator is uniform Lipschitz in the unknown variables, we relate the solution of a one dimensional backward stochastic differential equation with the value process of a stochastic differential game. Under a dominatio
This paper investigates a time-dependent multidimensional stochastic differential equation with drift being a distribution in a suitable class of Sobolev spaces with negative derivation order. This is done through a careful analysis of the correspond
In this paper, we study the solvability of anticipated backward stochastic differential equations (BSDEs, for short) with quadratic growth for one-dimensional case and multi-dimensional case. In these BSDEs, the generator, which is of quadratic growt
We solve a class of BSDE with a power function $f(y) = y^q$, $q > 1$, driving its drift and with the terminal boundary condition $ xi = infty cdot mathbf{1}_{B(m,r)^c}$ (for which $q > 2$ is assumed) or $ xi = infty cdot mathbf{1}_{B(m,r)}$, where $B