ﻻ يوجد ملخص باللغة العربية
In the present paper, we study the number of zeros of the first order Melnikov function for piecewise smooth polynomial differential system, to estimate the number of limit cycles bifurcated from the period annulus of quadratic isochronous centers, when they are perturbed inside the class of all piecewise smooth polynomial differential systems of degree $n$ with the straight line of discontinuity $x=0$. An explicit and fairly accurate upper bound for the number of zeros of the first order Melnikov functions with respect to quadratic isochronous centers $S_1, S_2$ and $S_3$ is provided. For quadratic isochronous center $S_4$, we give a rough estimate for the number of zeros of the first order Melnikov function due to its complexity. Furthermore, we improve the upper bound associated with $S_4$, from $14n+11$ in cite{LLLZ}, $12n-1$ in cite{SZ} to $[(5n-5)/2]$, when it is perturbed inside all smooth polynomial differential systems of degree $n$. Besides, some evidence on the equivalence of the first order Melnikov function and the first order Averaged function for piecewise smooth polynomial differential systems is found.
In this article we study the existence of limit cycles in families of piecewise smooth differential equations having the unit circle as discontinuity region. We consider families presenting singularities of center or saddle type, visible or invisible
We apply the averaging theory of high order for computing the limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. These discontinuous piecewise differential systems are formed by two either quadrat
In this paper, we extend the slow divergence-integral from slow-fast systems, due to De Maesschalck, Dumortier and Roussarie, to smooth systems that limit onto piecewise smooth ones as $epsilonrightarrow 0$. In slow-fast systems, the slow divergence-
In this paper we research global dynamics and bifurcations of planar piecewise smooth quadratic quasi--homogeneous but non-homogeneous polynomial differential systems. We present sufficient and necessary conditions for the existence of a center in pi
In this paper, we give a direct method to study the isochronous centers on center manifolds of three dimensional polynomial differential systems. Firstly, the isochronous constants of the three dimensional system are defined and its recursive formula