ﻻ يوجد ملخص باللغة العربية
We explore the structural, electronic, mechanical and thermoelectric properties of a new half Heusler compound, HfPtPb which is all metallic heavy element and has been recently been proposed to be stable [Nature Chem 7 (2015) 308]. In the present work, we employ density functional theory and semiclassical Boltzmann transport equations with constant relaxation time approximation. The mechanical properties such as Shear modulus, Young modulus, elastic constants, Poisson ratio, and shear anisotropy factor are investigated. The elastic and phonon properties reveal that this compound is mechanically and dynamically stable. Pugh and Frantsevich ratio demonstrates the ductile behavior and Shear anisotropic factor reflects the anisotropic nature of HfPtPb. The calculation of band structure predicts that this compound is semiconductor in nature with band gap 0.86 eV. The thermoelectric transport parameters such as Seebeck coefficient, electrical conductivity, and electronic thermal conductivity and lattice thermal conductivity have been calculated as a function of temperature. The highest value of Seebeck coefficient is obtained for n-type doping at optimal carrier concentration. We predict the maximum value of the figure of merit 0.25 at 1000 K. Our investigation suggests that this material is n-type semiconductor.
The electronic and transport properties of the half-Heusler compound LaPtSb are investigated by performing first-principles calculations combined with semi-classical Boltzmann theory and deformation potential theory. Compared with many typical half-H
We describe the crystal structure and elementary magnetic properties of a previously unreported ternary intermetallic compound, Cr4PtGa17, which crystallizes in a rhombohedral unit cell in the noncentrosymmetric space group R3m. The crystal structure
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport
We report $^{59}$Co, $^{93}$Nb, and $^{121}$Sb nuclear magnetic resonance (NMR) measurements combined with density functional theory (DFT) calculations on a series of half-Heusler semiconductors, including NbCoSn, ZrCoSb, TaFeSb and NbFeSb, to better
Half-Heusler compounds usually exhibit relatively higher lattice thermal conductivity that is undesirable for thermoelectric applications. Here we demonstrate by first-principles calculations and Boltzmann transport theory that the BiBaK system is an