ﻻ يوجد ملخص باللغة العربية
We investigate extremely luminous dusty galaxies in the environments around WISE-selected hot dust obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and z = 1.7, respectively. Previous observations have detected overdensities of companion submillimetre-selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ~ 2 - 3 and ~ 5 - 6 , respectively. We find that the space densities in both samples to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the SCUBA-2 Cosmology Legacy Survey (S2CLS). Both samples of companion sources have consistent mid-IR colours and mid-IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be responsible for the higher overdensity reported. We also find the star formation rate density (SFRDs) are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The results reported here provide an upper limit to the strength of angular clustering using the two-point correlation function. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5arcmin scale maps.
Submillimetre (submm) observations of WISE-selected, dusty, luminous, high-redshift galaxies have revealed intriguing overdensities around them on arcmin scales. They could be the best signposts of overdense environments on the sky.
We have observed the environments of a population of 33 heavily dust obscured, ultra-luminous, high-redshift galaxies, selected using WISE and NVSS at $z>$1.3 with the Infra-Red Array Camera on the $Spitzer$ Space Telescope over $rm5.12,times5.12,$ f
We present near-IR photometry and spectroscopy of 30 extremely luminous radio and mid-IR selected galaxies. With bolometric luminosities exceeding $sim10^{13}$ $rm{L_{odot}}$ and redshifts ranging from $z = 0.880-2.853$, we use VLT instruments X-shoo
We have conducted 22 GHz radio imaging at 1 resolution of 100 low-redshift AGN selected at 14-195 keV by the Swift-BAT. We find a radio core detection fraction of 96%, much higher than lower-frequency radio surveys. Of the 96 radio-detected AGN, 55 h
We present a spectroscopically complete sample of 147 infrared-color-selected AGN down to a 22 $mu$m flux limit of 20 mJy over the $sim$270 deg$^2$ of the SDSS Stripe 82 region. Most of these sources are in the QSO luminosity regime ($L_{rm bol} gtrs