Active control of friction by ultrasonic vibration is a well-known effect with numerous technical applications ranging from press forming to micromechanical actuators. Reduction of friction is observed with vibration applied in any of the three possible directions (normal to the contact plane, in the direction of motion and in-plane transverse). In this work, we consider the multi-mode active control of sliding friction, where phase-shifted oscillations in two or more directions act at the same time. Our analysis is based on a macroscopic contact-mechanical model that was recently shown to be well-suited for describing dynamic frictional processes. For simplicity, we limit our analysis to a constant, load-independent normal and tangential stiffness and two superimposed phase-shifted harmonic oscillations, one of them being normal to the plane and the other in the direction of motion. As in previous works utilizing the present model, we assume a constant local coefficient of friction, with reduction of the observed force of friction arising entirely from the macroscopic dynamics of the system. Our numerical simulations show that the resulting law of friction is determined by just three dimensionless parameters. Depending on the values of these parameters, three qualitatively different types of behavior are observed: (a) symmetric velocity-dependence of the coefficient of friction (same for positive and negative velocities), (b) asymmetric dependence with respect to the sign of the velocity, but with zero force at zero velocity, and (c) asymmetric dependence with non-zero force at zero velocity. The latter two cases can be interpreted as a dynamic ratchet (b) and an actuator (c).