ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of the progenitor of the M31 North-western stream: globular clusters as milestones of its orbit

79   0   0.0 ( 0 )
 نشر من قبل Takanobu Kirihara
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the nature, possible orbits and physical properties of the progenitor of the North-western stellar stream (NWS) in the halo of the Andromeda galaxy (M31). The progenitor is assumed to be an accreting dwarf galaxy with globular clusters (GCs). It is, in general, difficult to determine the progenitors orbit precisely because of many necessary parameters. Recently, Veljanoski et al. 2014 reported five GCs whose positions and radial velocities suggest an association with the stream. We use this data to constrain the orbital motions of the progenitor using test-particle simulations. Our simulations split the orbit solutions into two branches according to whether the stream ends up in the foreground or in the background of M31. Upcoming observations that will determine the distance to the NWS will be able to reject one of the two branches. In either case, the solutions require that the pericentric radius of any possible orbit be over 2 kpc. We estimate the efficiency of the tidal disruption and confirm the consistency with the assumption for the progenitor being a dwarf galaxy. The progenitor requires the mass $ga 2times10^6 M_{sun}$ and half-light radius $ga 30$ pc. In addition, $N$-body simulations successfully reproduce the basic observed features of the NWS and the GCs line-of-sight velocities.



قيم البحث

اقرأ أيضاً

178 - B. Sesar , J. Bovy , E. J. Bernard 2015
The Ophiuchus stream is a recently discovered stellar tidal stream in the Milky Way. We present high-quality spectroscopic data for 14 stream member stars obtained using the Keck and MMT telescopes. We confirm the stream as a fast moving ($v_{los}sim 290$ km s$^{-1}$), kinematically cold group ($sigma_{v_{los}}lesssim1$ km s$^{-1}$) of $alpha$-enhanced and metal-poor stars (${rm [alpha/Fe]sim0.4}$ dex, ${rm [Fe/H]sim-2.0}$ dex). Using a probabilistic technique, we model the stream simultaneously in line-of-sight velocity, color-magnitude, coordinate, and proper motion space, and so determine its distribution in 6D phase-space. We find that that the stream extends in distance from 7.5 to 9 kpc from the Sun; it is 50 times longer than wide, merely appearing highly foreshortened in projection. The analysis of the stellar population contained in the stream suggests that it is $sim12$ Gyr old, and that its initial stellar mass was $sim2times10^4$ $M_{odot}$ (or at least $gtrsim7times10^3$ $M_{odot}$). Assuming a fiducial Milky Way potential, we fit an orbit to the stream which matches the observed phase-space distribution, except for some tension in the proper motions: the stream has an orbital period of $sim350$ Myr, and is on a fairly eccentric orbit ($esim0.66$) with a pericenter of $sim3.5$ kpc and an apocenter of $sim17$ kpc. The phase-space structure and stellar population of the stream show that its progenitor must have been a globular cluster that was disrupted only $sim240$ Myr ago. We do not detect any significant overdensity of stars along the stream that would indicate the presence of a progenitor, and conclude that the stream is all that is left of the progenitor.
The Ophiuchus stream is a short arc-like stellar feature of uncertain origin located $sim 5$ kpc North of the Galactic centre. New proper motions from the second $Gaia$ data release reconcile the direction of motion of stream members with the stream arc, resolving a puzzling mismatch reported in earlier work. We use N-body simulations to show that the stream is likely only on its second pericentric passage, and thus was formed recently. The simulations suggest that the entire disrupted progenitor is visible in the observed stream today, and that little further tidal debris lies beyond the ends of the stream. The luminosity, length, width, and velocity dispersion of the stream suggest a globular cluster (GC) progenitor substantially fainter and of lower surface brightness than estimated in previous work, and unlike any other known globulars in the Galaxy. This result suggests the existence of clusters that would extend the known GC population to fainter and more weakly bound systems than hitherto known. How such a weakly-bound cluster of old stars survived until it was disrupted so recently, however, remains a mystery. Integrating backwards in time, we find that the orbits of Sagittarius and Ophiuchus passed within $sim 5$ kpc of each other about $sim 100$ Myrs ago, an interaction that might help resolve this puzzle.
293 - Luciana Federici 2012
Thanks to the outstanding capabilites of the HST, our current knowledge about the M31 globular clusters (GCs) is similar to our knowledge of the Milky Way GCs in the 1960s-1970s, which set the basis for studying the halo and galaxy formation using th ese objects as tracers, and established their importance in defining the cosmic distance scale. We intend to derive a new calibration of the M_V(HB)-[Fe/H] relation by exploiting the large photometric database of old GCs in M31 in the HST archive. We collected the BVI data for 48 old GCs in M31 and analysed them by applying the same methods and procedures to all objects. We obtained a set of homogeneous colour-magnitude diagrams (CMDs) that were best-fitted with the fiducial CMD ridge lines of selected Milky Way template GCs. Reddening, metallicity, Horizontal Branch (HB) luminosity and distance were determined self-consistently for each cluster. There are three main results of this study: i) the relation M_V(HB)=(0.25+/-0.02)[Fe/H]+(0.89+/-0.03), which is obtained from the above parameters and is calibrated on the distances of the template Galactic GCs; ii) the distance modulus to M31 of (m-M)_0=24.42+/-0.06 mag, obtained by normalising this relation at the reference value of [Fe/H]=-1.5 to a similar relation using V_0(HB). This is the first determination of the distance to M31 based on the characteristics of its GC system which is calibrated on Galactic GCs; iii) the distance to the Large Magellanic Cloud (LMC), which is estimated to be 18.54+/-0.07 mag as a consequence of the previous results. These values agree excellently with the most recent estimate based on HST parallaxes of Galactic Cepheid and RR Lyrae stars, as well as with recent methods.
We focus on the evidence of a past minor merger discovered in the halo of the Andromeda galaxy (M31). Previous N-body studies have enjoyed moderate success in producing the observed giant stellar stream (GSS) and stellar shells in M31s halo. The obse rved distribution of stars in the halo of M31 shows an asymmetric surface brightness profile across the GSS; however, the effect of the morphology of the progenitor galaxy on the internal structure of the GSS requires further investigation in theoretical studies. To investigate the physical connection between the characteristic surface brightness in the GSS and the morphology of the progenitor dwarf galaxy, we systematically vary the thickness, rotation velocity and initial inclination of the disc dwarf galaxy in N-body simulations. The formation of the observed structures appears to be dominated by the progenitors rotation. Besides reproducing the observed GSS and two shells in detail, we predict additional structures for further observations. We predict the detectability of the progenitors stellar core in the phase-space density distribution, azimuthal metallicity gradient of the western shell-like structure and an additional extended shell in the north-western direction that may constrain the properties of the progenitor galaxy.
We present Keck/HIRES spectra of 3 globular clusters in the outer halo of M31, at projected distances beyond ~80 kpc from M31. The measured recession velocities for all 3 globular clusters confirm their association with the globular cluster system of M31. We find evidence for a declining velocity dispersion with radius for the globular cluster system. Their measured internal velocity dispersions, derived virial masses and mass-to-light ratios are consistent with those for the bulk of the M31 globular cluster system. We derive old ages and metallicities which indicate that all 3 belong to the metal-poor halo globular cluster subpopulation. We find indications that the radial gradient of the mean metallicity of the globular cluster system interior to 50 kpc flattens in the outer regions, however it is still more metal-poor than the corresponding field stars at the same (projected) radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا