ﻻ يوجد ملخص باللغة العربية
The Infrared Spectrograph (IRS) on the {em Spitzer Space Telescope} observed nearly 800 point sources in the Large Magellanic Cloud (LMC), taking over 1,000 spectra. 197 of these targets were observed as part of the Sage-Spec Spitzer Legacy program; the remainder are from a variety of different calibration, guaranteed time and open time projects. We classify these point sources into types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership, and variability information, using a decision-tree classification method. We then refine the classification using supplementary information from the astrophysical literature. We find that our IRS sample is comprised substantially of YSO and H,{sc ii} regions, post-Main Sequence low-mass stars: (post-)AGB stars and planetary nebulae and massive stars including several rare evolutionary types. Two supernova remnants, a nova and several background galaxies were also observed. We use these classifications to improve our understanding of the stellar populations in the Large Magellanic Cloud, study the composition and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. We discover that some widely-used catalogues of objects contain considerable contamination and others are missing sources in our sample.
The SAGE-Spec Spitzer Legacy program is a spectroscopic follow-up to the SAGE-LMC photometric survey of the Large Magellanic Cloud carried out with the Spitzer Space Telescope. We present an overview of SAGE-Spec and some of its first results. The SA
We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties.
The Magellanic clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust.W
Formation of GMCs is one of the most crucial issues in galaxy evolution. I will compare CO and HI in the LMC in 3 dimensional space for the first time aiming at revealing the physical connection between GMCs and associated HI gas at a ~40 pc scale. T
We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared proper