ﻻ يوجد ملخص باللغة العربية
We present mock optical images, broad-band and H$alpha$ fluxes, and D4000 spectral indices for 30,145 galaxies from the EAGLE hydrodynamical simulation at redshift $z=0.1$, modelling dust with the SKIRT Monte Carlo radiative transfer code. The modelling includes a subgrid prescription for dusty star-forming regions, with both the subgrid obscuration of these regions and the fraction of metals in diffuse interstellar dust calibrated against far-infrared fluxes of local galaxies. The predicted optical colours as a function of stellar mass agree well with observation, with the SKIRT model showing marked improvement over a simple dust screen model. The orientation dependence of attenuation is weaker than observed because EAGLE galaxies are generally puffier than real galaxies, due to the pressure floor imposed on the interstellar medium. The mock H$alpha$ luminosity function agrees reasonably well with the data, and we quantify the extent to which dust obscuration affects observed H$alpha$ fluxes. The distribution of D4000 break values is bimodal, as observed. In the simulation, 20$%$ of galaxies deemed `passive for the SKIRT model, i.e. exhibiting D4000 $> 1.8$, are classified `active when ISM dust attenuation is not included. The fraction of galaxies with stellar mass greater than $10^{10}$ M$_odot$ that are deemed passive is slightly smaller than observed, which is due to low levels of residual star formation in these simulated galaxies. Colour images, fluxes and spectra of EAGLE galaxies are to be made available through the public EAGLE database.
We calculate the colours and luminosities of redshift z = 0.1 galaxies from the EAGLE simulation suite using the GALAXEV population synthesis models. We take into account obscuration by dust in birth clouds and diffuse ISM using a two-component scree
We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When c
The radiation of stars heats dust grains in the diffuse interstellar medium and in star-forming regions in galaxies. Modelling this interaction provides information on dust in galaxies, a vital ingredient for their evolution. It is not straightforwar
Context: The Monte Carlo method is the most widely used method to solve radiative transfer problems in astronomy, especially in a fully general 3D geometry. A crucial concept in any Monte Carlo radiative transfer code is the random generation of the
We present a novel framework to self-consistently model the effects of radiation fields, dust physics and molecular chemistry (H$_2$) in the interstellar medium (ISM) of galaxies. The model combines a state-of-the-art radiation hydrodynamics module w