ﻻ يوجد ملخص باللغة العربية
We present accurate photometric redshifts for galaxies observed by the Cluster Lensing and Supernova survey with Hubble (CLASH). CLASH observed 25 massive galaxy cluster cores with the Hubble Space Telescope in 16 filters spanning 0.2 - 1.7 $mu$m. Photometry in such crowded fields is challenging. Compared to our previously released catalogs, we make several improvements to the photometry, including smaller apertures, ICL subtraction, PSF matching, and empirically measured uncertainties. We further improve the Bayesian Photometric Redshift (BPZ) estimates by adding a redder elliptical template and by inflating the photometric uncertainties of the brightest galaxies. The resulting photometric redshift accuracies are dz/(1+z) $sim$ 0.8%, 1.0%, and 2.0% for galaxies with I-band F814W AB magnitudes $<$ 18, 20, and 23, respectively. These results are consistent with our expectations. They improve on our previously reported accuracies by a factor of 4 at the bright end and a factor of 2 at the faint end. Our new catalog includes 1257 spectroscopic redshifts, including 382 confirmed cluster members. We also provide stellar mass estimates. Finally, we include lensing magnification estimates of background galaxies based on our public lens models. Our new catalog of all 25 CLASH clusters is available via MAST. The analysis techniques developed here will be useful in other surveys of crowded fields, including the Frontier Fields and surveys carried out with J-PAS and JWST.
The Cluster Lensing And Supernovae survey with Hubble (CLASH) is an Hubble Space Telescope (HST) Multi-Cycle Treasury program observing 25 massive galaxy clusters. CLASH observations are carried out in 16 bands from UV to NIR to derive accurate and r
Context. Studies of galaxy pairs can provide valuable information to jointly understand the formation and evolution of galaxies and galaxy groups. Consequently, taking into account the new high precision photo-z surveys, it is important to have relia
We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and catastrophic outlier fraction of photometric r
The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ~900 square arcminutes in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available
Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and AGN feedback, are dependent upon local dynamical timescales. However, accurately mapping the mass distribution within individual clust