ﻻ يوجد ملخص باللغة العربية
An external off-resonant pumping is proposed as a tool to control the Dzyaloshinskii-Moriya interaction (DMI) in ferromagnetic layers with strong spin-orbit coupling. Combining theoretical analysis with numerical simulations for an $s$-$d$-like model we demonstrate that linearly polarized off-resonant light may help stabilizing novel noncollinear magnetic phases by inducing a strong anisotropy of the DMI. We also investigate how with the application of electromagnetic pumping one can control the stability, shape and size of individual skyrmions to make them suitable for potential applications.
Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive
Magnetic skyrmions are topological solitons with a nanoscale winding spin texture that hold promise for spintronics applications. Until now, skyrmions have been observed in a variety of magnets that exhibit nearly parallel alignment for the neighbour
Materials hosting magnetic skyrmions at room temperature could enable new computing architectures as well as compact and energetically efficient magnetic storage such as racetrack memories. In a racetrack device, information is coded by the presence/
The possibility of utilizing the rich spin-dependent properties of graphene has attracted great attention in pursuit of spintronics advances. The promise of high-speed and low-energy consumption devices motivates a search for layered structures that
We report a significant Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) at interfaces comprising hexagonal boron nitride (h-BN) and Co. By comparing the behavior of these phenomena at graphene/Co and h-BN/Co interf